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Maximal Beable Subalgebras of Quantum
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Given a state on an algebra of bounded quantum mechanical observables, we
investigate those subalgebras that are maximal with respect to the property that
the given state’ s restriction to the subalgebra is a mixture of dispersion-free
statesÐ what we call maximal beable subalgebras (borrowing terminology due
to J. S. Bell). We also extend our results to the theory of algebras of unbounded
observables (as developed by Kadison), and show how our results articulate a
solid mathematical foundation for certain tenets of the orthodox Copenhagen
interpretation of quantum theory.

1. INTRODUCTION

A number of results in the theory of operator algebras establish the

impossibility of assigning simultaneously determinate values to all observ-

ables of a quantum system. Von Neumann first observed that the algebra of

bounded operators +(*) on a separable Hilbert space with dim * . 1 does
not admit any dispersion-free normal state [36, p. 32 0], a result which was

only somewhat later extended by Misra to arbitrary dispersion-free states

[29, Cor. 2]. From general algebraic postulates for observables, and without

recourse to a Hilbert space representation, Segal deduced that an algebra of

quantum mechanical observables possesses a full set of dispersion-free states

if and only if it is commutative [34, Thm. 3]. Kochen and Specker [25]
relaxed von Neumann’ s requirement that values of observables be given by

a linear functional on +(*), and regarded the latter as, instead, a partial

algebra, with the product and sum of two elements defined only if they
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commute. For 2 , dim * , ` , they constructed finitely generated partial

subalgebras of self-adjoint operators in +(*) that possess no partial disper-

sion-free states. This result was established independently by J. S. Bell [3;

cf. 12], who also noticed that the nonexistence of a partial dispersion-free

state on all self-adjoint elements of +(*) is an immediate corollary of

Gleason’ s theorem [18]. More recently, these results have been extended to

the case of infinite-dimensional *, by reduction to the finite case [21, 2];

and, in the latter case, many more examples have been uncovered of partial

subalgebras of observables without partial dispersion-free states (see ref. 30,

Ch. 7, and ref. 10, Ch. 3 for reviews).

Evidently none of these negative results settle the positive question of

which subalgebras of quantum mechanical observables (apart from commuta-

tive ones) can be taken to have simultaneously determinate values. Bell [3,

Sec. 3], a well-known critic of the foundational importance of von Neumann’ s

(and, indeed, his own) result [15, Sec. 3], was the first to raise the importance

of this positive question. With the aim of avoiding primitive reference to the

term `measurement’ in the axiomatic foundations of quantum theory, Bell

forcefully argued (see also ref. 5, Chs. 7 and 19) that it ought to suffice to

assign simultaneous values to some appropriate proper subset of all quantum

mechanical observablesÐ which he distinguished from the latter by calling

them `beables’ : ª Could one not just promote some of the observables of the

present quantum theory to the status of beables? The beables would then be

represented by linear operators in the state space. The values which they are

allowed to be would be the eigenvalues of those operators. For the general

state the probability of a beable being a particular value would be calculated

just as was formerly calculated the probability of observing that valueº [4,

p. 688]. Bell’s remarks here suggest the following problem (which has

received scant attention in the mathematical literature; but see refs. 37, 15):

Given a state on an algebra of observables, characterize those subalgebras,

of `beables,’ that are maximal with respect to the property that the given

state’ s restriction to the subalgebra is a mixture of dispersion-free states.

Such maximal beable subalgebras could then represent maximal sets of

observables with simultaneously determinate values distributed in accordance

with the state’s expectation values. The aim of the present paper is to investi-

gate maximal beable subalgebras and establish their importance for the foun-

dations of quantum theory. Later we shall extend our analysis of maximal

beable subalgebras to include the case where sets of unbounded observables

are assigned simultaneously determinate values consistent with a state’s

expectation values. Though some open problems remain, our results suffice

to articulate certain aspects of the orthodox Copenhagen interpretation of

quantum theory (such as the joint indeterminacy of canonically conjugate
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variables, and Bohr’ s defense of the `completeness’ of quantum theory against

the argument of Einstein±Podolsky±Rosen) in a mathematically rigorous way.

1.1. From JLB- to C*-Algebras

In the first instance, our investigation concerns algebras of bounded

quantum mechanical observables, which immediately raises the question of

what sort of algebraic structure should be assumed. Following refs. 26, 27,

and 15 we choose to regard the observables of a quantum system as a JLB-
algebra. In brief, a JLB-algebra is any real Banach space (X, | ? |, + , c) such

that the Jordan product + is symmetric, the Lie product c is antisymmetric

and satisfies the Jacobi identity, c is a derivation with respect to + , and + and

c together respect the associator identity:

(A + B) + C 2 A + (B + C ) 5 r((A c C ) c B) (1.1)

for some r P [ 0, ` ). Moreover, defining A2 [ A + A, the norm on X must satisfy

|A + B| # |A| |B|, |A2| 5 |A|2, |A2| # |A2 1 B2| (1.2)

for all A, B P X.

A JLB-algebra X has a positive cone X+ consisting of elements of the

form {A2: A P X}. A linear functional r of X is said to be positive just in

case r (A) $ 0, for all A P X+. If X has a unit I, a positive linear functional

r of X is said to be a state just in case r (I ) 5 1.

We have not provided any sort of axiomatic or operational derivation
to justify our choice of JLB-algebras over the various other sorts of algebraic

structures we might have used. For example, we might well have chosen to

set our investigation in the context of Segal algebras [34], which admit neither

a Lie product nor a distributive Jordan product. However, the choice of JLB-

algebras has an extremely strong pragmatic justification, owing to the fact
that the theory of JLB-algebras (unlike the case of Segal algebras [28]) may

essentially be reduced to the theory of C*-algebras.

First, if X is a JLB-algebra, its complex span X C is canonically isomor-

phic to a C*-algebra. In particular, for A, A8 P X, we define a C* product by

AA8 [ (A + A8) 2 i ! r(A c A8) (1.3)

and, for A 1 iB, A8 1 iB8 P X C ,

(A 1 iB)(A8 1 iB8) [ (AA8 2 BB8) 1 i(AB8 1 BA8) (1.4)

(The associativity of the C* product follows from the Jacobi and associator

identities together with the fact that c is a derivation with respect to + .) We

define an involution * on X C by
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(A 1 iB)* [ A 2 iB (1.5)

It can then be shown that the norm on X extends uniquely so that (X C , | ? |)
is a C*-algebra [26, Sec. 3.8].

Conversely, if (A, | ? |) is a C*-algebra, then the set of self-adjoint ele-

ments of A, denoted by Asa, forms a real Banach space with norm | ? |. We

can then equip Asa with a Jordan product + defined by

A + B [ 1±2 [A, B]+ 5 1±2 (AB 1 BA) (1.6)

and with a Lie product c defined by

A c B [ i±2 [A, B] 5 i±2 (AB 2 BA) (1.7)

The resulting object (Asa, | ? |, + , c) can then be shown to satisfy the axioms

which define a JLB-algebra [17, 26, 27].

Recall that a state of a C*-algebra is a positive linear functional of norm

1. It then follows that there is a natural bijective correspondence between

states of a C*-algebra A and the states of the JLB-algebra Asa. Indeed, if v
is a state of A, then v ) Asa is a state of Asa. Conversely, if r is a state of Asa,

then the unique linear extension of r to A is a state of A. (That the extension

is indeed a state follows from the fact that any positive element in a C*-

algebra is the square of a self-adjoint element.)

We note two further parallels between JLB- and C*-algebras:

1. A JLB-algebra X is called abelian just in case A c B 5 0 for all

A, B P X. Clearly, X is abelian if and only if X C is an abelian

C*-algebra.
2. Let A be a concrete C*-algebra, acting on some Hilbert space *.

Let A 2 denote the weak-operator topology (WOT) closure of A in

L(*). It then follows easily (from the WOT-continuity of * and

von Neumann’ s double commutant theorem) that (Asa)
2 5 (A 2 )sa.

Consequently, A is a von Neumann algebra if and only if Asa is

WOT-closed.

In the remainder of this paper, then, we will carry out our inquiry in

the setting of the theory of C*- and von Neumann algebras. If the reader is

disturbed by the use of complex *-algebras in a discussion of assigning
determinate values to quantum mechanical observables (which, of course,

have to be self-adjoint), the above results can be used to translate what

follows into the language of JLB-algebras.

1.2. Dispersion-Free States

Let A be a unital C*-algebra and let v be a state of A. Following ref.

1, p. 304, we define the definite algebra of v by
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D v [ {A P A : v (AX ) 5 v (A) v (X ) for all X P A} (1.8)

It is not difficult to show that D v is a unital subalgebra of A. [Indeed (see
Exercise 4.6.16 in ref. 23) D v is none other than the complex span of the

Kadison±Singer definite set [24, p. 398]:

{A P Asa: v (A2) 5 ( v (A))2} (1.9)

which is the JLB-algebra canonically determined, via (1.6) and (1.7), by D v .]

For A P A, we say that v is dispersion-free on A just in case A P D v . If

B is a subalgebra of A, we say that v is dispersion-free on B just in case

B # D v . With this notation, we have the following:

Proposition 1.1. (i) If B # D v , then v ) B is a pure state. The converse

holds if B is abelian.

(ii) If A P D v , then v (A) P sp(A).

Proof. Part (i) follows immediately from Proposition 4.4.1 in ref. 23,

and the comments following the proof of that proposition. Part (ii) follows

immediately from Remark 3.2.11 of ref. 23. n

Remark 1.2. The fact that L(*) (with * nontrivial and separable) pos-

sesses no dispersion-free states can now be easily seen to follow from (i)

and the fact [1, p. 305] that commutatorsÐ i.e., operators expressible as

[X, Y ] for some X, Y P L(*)Ð are norm dense in L(*). Note that if (ii) did

not hold, it would not make physical sense to use the value of a dispersion-

free state to represent the intrinsic, possessed value of an observable (assum-
ing, that is, that when an observable with a determinate value is measured,

its value is faithfully revealed by the result of the measurement).

In their partial algebraic approach, Kochen and Specker explicitly

require, not just that (partial) dispersion-free states preserve the continuous

functional relations between observables, but all Borel functional relations

[25, Eq. (4)]. If one restricts to the case of observables on finite-dimensional
spaces (as they eventually do [25, Sec. 3]), then this extra assumption is

redundant, since every Borel function of such an observable is a polynomial

function. However, we certainly want to allow as `beables’ observables with

continuous spectra, and also assign them (precise point) values via dispersion-

free states. We end this section by showing how this allowance forces one

to give up requiring that the values of beables preserve all Borel func-
tional relations.

Definition. If V is a von Neumann algebra and v is a dispersion-free

state of V, we say that v satisfies Borel-FUNC on V just in case v ( f(A)) 5
f( v (A)), for each A P Vsa and each bounded Borel function f on sp(A).
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Recall that a * -homomorphi sm F from von Neumann algebra V1 to

von Neumann algebra V2 is called s -normal when F maps the least upper

bound of each increasing sequence of self-adjoint operators bounded above
in V1 onto the least upper bound of the image sequence in V2. Recall also

that a state v on a von Neumann algebra V is called normal just in case

v (Ha) ® v (H ) for each monotone-increasing net of self-adjoint operators

{Ha} in V with least upper bound H. If v is a dispersion-free state of V,

then v (being hermitian) is a * -homomorph ism of V onto the (von Neumann

algebra of) complex numbers. Thus, a dispersion-free normal state v of V
is a s -normal homomorphism of V onto C .

Notation. If x is a unit vector in *, then v x denotes the vector state of

L(*) defined by v x(A) 5 ^ Ax, x & for each A P L(*).

Theorem 1.3. Let V be a von Neumann algebra acting on a separable

Hilbert space *, and let v be a dispersion-free state of V. Then v satisfies
Borel-FUNC on V if and only if there is a unit vector x P * such that

v 5 v x ) V .

Proof. ª Ü º If v 5 v x ) V , then v is a normal state of V [23, Thm.

7.1.12]. Since v is (by hypothesis) dispersion-free on V, v is a s -normal

homomorphism of V onto C , and the conclusion that v satisfies Borel-FUNC
on V follows immediately from ref. 23, Prop. 5.2.14.

ª Þ º Suppose that v satisfies Borel-FUNC on V. Let {Pa: a P A } be

any family of mutually orthogonal projections in V. Since * is separable,

A must be countable, and we may assume that A 5 N . Let A 5
( `

n 5 1 3
2 nPn. Since V is SOT-closed, A P Vsa. Further, fn(A) 5 Pn , where fn

is the characteristic function of the (singleton) set {3
2 n}. Let f be the charac-

teristic function of the (entire) set {3 2 n: n P N }. Now, ( `
n 5 1 fn 5 f in the

sense of pointwise convergence of partial sums. Since the map g ® g(A)

from Borel functions on sp(A) into V is a s -normal homomorphi sm [23, p.

32 0], ( `
n 5 1 fn(A) 5 f(A). Using the previous two facts, we can compute

v ( ( Pn) 5 v ( ( fn (A)) 5 v ( f(A)) 5 f( v (A)) (1.1 0)

5 ( fn( v (A)) 5 ( v ( fn(A)) 5 ( v (Pn) (1.11)

where we used Borel-FUNC in the third and fifth equalities. Since {Pn} is

an arbitrary family of orthogonal projections in V, v is totally additive on

V. By ref. 23, Thm. 7.1.9, there is a sequence {xn} of unit vectors in *, and

sequence { l n} of nonnegative real numbers with sum 1, such that v 5
( `

n 5 1 l n v xn ) V. We may assume that 0 , l 1 # 1, and the last equation can

then be written as v 5 l 1 v x1 ) V 1 (1 2 l 1) r , with r a state of V. Since v is

dispersion-free on V, it is pure on V [Proposition 1.1(i)]. Thus, v 5 v x1 ) B,

and v is a vector state. n
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Evidently a dispersion-free state on a concrete C*-algebra is a vector

state only if that vector is a common eigenvector for every observable in the

algebra. Thus Theorem 1.3 shows ( pace [25, 35]) that it would be too strong
to require dispersion-free states on beable subalgebras to satisfy Borel-FUNC,

for that would have the effect of excluding continuous spectrum observables

from beable subalgebras by fiat.

2. BEABLE AND MAXIMAL BEABLE SUBALGEBRAS OF
OBSERVABLES

We start by formalizing the idea of a beable subalgebra, and then fully

characterize both beable and maximal beable subalgebras relative to a normal
(i.e., ultraweakly continuous) state on a concrete C*-algebra (generalizing

ref. 15, Thm. 10).

Definition. Let A be a unital C*-algebra, let B be a subalgebra of A
such that I P B, and let r be a state of A. Following ref. 15, we say that
B is beable for r if r ) B is a mixture of dispersion-free states; i.e., if and

only if there is a probability measure m on the space S of dispersion-free

states of B such that

r (A) 5 # S

v s(A) d m (s), A P B (2.1)

Physically, B is beable for r just in case the observables in B can be taken

to have determinate values statistically distributed in accordance with r ’ s

expectation values. We say that B is maximal beable for r if B is beable

for r and B is not properly contained in any other subalgebra of A that is

beable for r . [An easy application of Zorn’ s lemma, using the characterization
in Prop. 2.2(ii) below, establishes that maximal beable subalgebras always

exist for any state.]

Example (Definite Algebra). Let A be a C*-algebra and let r be a state

of A. Clearly D r is beable for r , since r itself is dispersion-free on D r .
Although it requires a nontrivial result [24, Thm. 4], it can also be shown

that for any pure state r , D r is maximal beable for r [15, Thm. 11]. In the

case when r 5 v x , a vector state on a concrete C*-algebra, D v x consists of

exactly those observables with x as an eigenvector. For example, Dirac [16,

Sec. 12] takes for granted that the observables determinate for a quantum

system in a pure state v x coincide with D v xÐ an assumption sometimes
called the `eigenstate±eigenvalue link.’

Notation. If } is a subset of some Hilbert space *, we let [}] denote

its closed, linear span. If A P L(*), we let 5(A) denote the closure of the
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range of A, and we let 1(A) denote the null space of A. If 7 is a closed

subspace of *, we let P7 denote the projection onto 7. For x P *, we

abbreviate P[x] by Px.
We will make frequent use of the following simple lemma.

Lemma 2.1. Let * be a Hilbert space, and let x P *. Suppose that A
is a C*-algebra acting on *. Then, for any T P L(*), if Tx P [Ax] and

TAx 5 ATx for all A P A, then (i) T leaves [Ax] invariant, and (ii) TAy 5
ATy for all A P A and for all y P [Ax].

Proof. (i) Suppose that Tx P [Ax] and that TAx 5 ATx for all A P A.

Fix A P A. Clearly A itself leaves [Ax] invariant (since A is a C*-algebra

and A is continuous). Thus, TAx 5 A(Tx) P [Ax]. Since A P A was arbitrary,
it follows by the linearity and continuity of T that T leaves [Ax] invariant.

(ii) Let A P A, and let y P [Ax]. Since [T, A ] is linear and continuous,

it is sufficient to show that [T, A]Bx 5 0 for any B P A. But this is immediate

from the fact that [T, AB]x 5 0 and [T, B]x 5 0. n

Let A be a C*-algebra, and let r be a state of A. Recall that the left-
kernel T r of r is the set of elements A P A such that r (A*A) 5 0. We may
then formulate the following equivalent conditions for a subalgebra B of A
to be beable for r :

Proposition 2.2. Let B be a subalgebra of A. Let r be a state of A, let

( p r , * r , x r ) be the GNS representation of A induced by the state r , and let

7 [ [ p r (B)x r ] # * r . Let ( f r , & r , v r ) be the GNS representation of B induced

by r ) B. Then, the following are equivalent:

(i) B is beable for r .
(ii) [A, B] P T r for all A, B P B.

(iii) f r (B) is abelian.

(iv) p r (B)P7 is abelian.

Remark 2.3. Reference 15, Thm. 7, contains an alternate proof of

(i) Û (ii).

Proof. We prove (i) Þ (ii) Þ (iii) Þ (i) and then (iii) Û (iv).

ª (i) Þ (ii)º Suppose that B is beable for r . Then there is a measure

m on the set S of dispersion-free states of B such that (2.1) holds. Fix

arbitrary A, B P B. Since each v in S is a * -homomorph ism of B into C ,
and states are hermitian, v ([A, B]*[A, B]) 5 ) v ([A, B]) ) 2 5 ) v (A) v (B) 2
v (B) v (A) ) 2 5 0 for each v P S, and thus r ([A, B]*[A, B]) 5 0 by (2.1).

ª (ii) Þ (iii)º Suppose that [A, B] P T r for all A, B P B. In order to

show that f r (B) is abelian, let f r (A) P f r (B). Thus, for any f r (B) P f r (B),
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^ [ f r (A), f r (B)]v r , [ f r (A), f r (B)]v r & 5 ^ f r ([A, B]*[A, B])v r , v r & (2.2)

5 r ([A, B]*[A, B]) 5 0 (2.3)

Thus, [ f r (A), f r (B)]v r 5 0. Now, since [ f r (B)v r ] 5 &r , we may apply

Lemma 2.1 with C*-algebra f r (B) and vector v r , to conclude that f r (A) P
f r (B)8. Therefore, f r (B) # f r (B)8, and f r (B) is abelian.

ª (iii) Þ (i)º If f r (B) is abelian, we may identify it with the set of

continuous, complex-valued functions #(S) on some compact Hausdorff
space S [23, Thm. 4.4.3]. Consider the vector state v v r on f r (B) . #(S)

induced by v r . By the Riesz Representation Theorem [32, Thm. 2.14], there

is a probability measure m on S such that

v v r ( f (A)) 5 # S

[ f r (A)](s) d m (s), f r (A) P f r (B) . #(S) (2.4)

For each s P S, define v s: B ® C by v s(A) 5 [ f r (A)](s) (A P B). The

reader may verify without difficulty that each v s defines a dispersion-free
state on B [using the fact that f r is a * -homomorph ism, and the definition

of multiplication on #(S)]. Finally, for each A P B,

r (A) [ ( v v r + f r )(A) 5 v v r ( f r (A))

5 # S

[ f r (A)](s) d m (s) 5 # S

v s(A) d m (s) (2.5)

Therefore, B is beable for r .

ª (iii) Û (iv)º p r (B) is a C*-subalgebra of p r (A), which is in turn a

C*-subalgebra of L(* r ). Thus, the mapping p r (A) ® j p r (A) ) 7 is a representa-

tion of p r (B) on 7 with cyclic vector x r [23, p. 276], and the composition

map p Ãr [ j + p r ) B is a cyclic representation of B on 7.

We now show that ( p Ãr , 7) is unitarily equivalent to ( f r , & r ). Recall

that &r is the completion of the pre-Hilbert space {A 1 TB
r : A P B}, where

TB
r [ T r ù B. For elements of this latter set, there is a natural isometric

mapping U into 7; namely the mapping that takes A 1 TB
r to A 1 T r . It is

not difficult to verify that U extends uniquely to a unitary operator U from

&r onto 7, and that p Ãr (A)U 5 U f r (A) for all A in B. Thus, ( p Ãr , 7) is

unitarily equivalent to ( f r , & r ).

The equivalence of (iii) and (iv) now follows from the fact that p r (B)P7

is * -isomorphic to p Ãr (B). n

Recall that a state r on a C*-algebra B is called faithful just in case

whenever A P B+ and r (A) 5 0, then A 5 0.

Corollary 2.4. Suppose that B is beable for r and that r is a faithful

state of B. Then B is abelian.
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Proof. Since r is faithful, f r is an isomorphism of B onto f r (B) [23,

Exercise 4.6.15]. However, f r (B) is abelian [Prop. 2.2 (iii)]. n

Example (Vacuum State). Let {A(O)}O # M be a net of local von Neumann

algebras over Minkowski spacetime M, and let r be the vacuum state [19,

p. 23]. If O has nonempty spacelike complement in M, it follows by the

Reeh±Schlieder Theorem [19, Thm. 1.3.1] that r is a faithful state of A(O)
[since r is induced by the vacuum vector V which is separating for A(O)].

Suppose that B # A(O) and that B is beable for r . Then r ) B is faithful, and

it follows from Corollary 2.4 that B is abelian.

2.1. Beable Algebras for Normal States

We have defined the beable status of a C*-algebra B with respect to

an arbitrary state r of B. In what follows, we specialize to the concrete case

where B is acting on some (fixed) Hilbert space * (not necessarily separable).
If r is a normal state of L(*), it follows that there is a positive trace-1

operator K P L(*) such that r (A) 5 Tr(KA) for each A P L(*) [23, Remark

7.1.1 0, Thm. 7.1.12]. With this in mind, we will freely interchange ª B is

beable for r º with ª B is beable for K.º

Notation. In what follows, we will abbreviate 5(K ) by _.

Remark 2.5. In the special case where K 5 Pv for some unit vector v P
*, B is beable for Pv just in case ABv 5 BAv for each A, B P B. This

follows by Proposition 2.2(ii) since Tr(Pv[A, B]*[A, B]) 5 ^ [A, B]v, [A, B]v & .

Lemma 2.6. Suppose that B is a subalgebra of L(*), K is a positive,

trace-1 operator on *, } is a subset of *, and 0 Þ v P *. Then:

(i) B is beable for Px , for all x P }, if and only if B is beable for

Py , for all y P [}].
(ii) B is beable for Pv if and only if B is beable for Px , for all x P [Bv].

(iii) B is beable for K if and only if B is beable for Px , for all x P _.

Proof. (i) The ª ifº implication is trivial. Suppose then that B is beable

for Px , for all x P }. Consider the closed subspace of * given by

= [ ` {1([A, B]): A, B P B} (2.6)

Clearly, = is precisely the set of all x P * such that B is beable for Px (see
Remark 2.5). By supposition, } # =; thus, = will also contain }’ s closed,

linear span [}].

(ii) The ª ifº implication is trivial, since B contains the identity. Con-

versely, suppose that B is beable for Pv. Fix A P B. Then, for any B P B,
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[A, B ]v 5 0, and moreover Av P [Bv]. Thus, we may apply Lemma 2.1 to

conclude that ABx 5 BAx for any B P B and for any x P [Bv]. Since A
was an arbitrary element of B, it follows (Remark 2.5) that B is beable for
Px whenever x P [Bv].

(iii) Recall, first, that as a positive, trace-1 operator, K has a pure-point

spectrum [36, pp. 188±191]. By the spectral theorem (and the fact that K
leaves _ invariant), _ is the closed span of the eigenvectors of K in its

range. Thus, there is a countable set {xn} # _ such that |xn| 5 1 for all n,

K 5 ( n l nPxn, where l n P ( 0, 1], and ( n l n 5 1.
ª Þ º Suppose that B is beable for K. Recall from Proposition 2.2(ii)

that B is beable for K if and only if Tr(K[A, B]*[A, B]) 5 0 for all A, B P
B. Given any eigenvector y in _, we may write K 5 l Py 1 (1 2 l )K 8 for

some positive, trace-1 operator K 8, and l P ( 0, 1]. Thus, by the linearity of

the trace,

l Tr(Py[A, B ]*[A, B ]) 5 Tr(K[A, B]*[A, B]) 2 (1 2 l )Tr(K 8 [A, B]*[A, B]) (2.7)

# Tr(K[A, B]*[A, B]) 5 0 (2.8)

where the inequality in (2.8) follows since l P ( 0, 1] and Tr(K 8[A, B]*

[A, B]) $ 0. Thus, Tr(Py[A, B ]*[A, B]) 5 0 for any eigenvector y of K in its

range. Since the closed linear span of these eigenvectors is just _, the
conclusion follows by (i).

ª Ü º Let A, B P B. Then, by hypothesis, Tr(Px[A, B]*[A, B ]) 5 0

whenever x P _. In particular, Tr(Pxn[A, B]*[A, B ]), for each n, where K 5
( n l nPxn. Therefore, Tr(K[A, B]*[A, B]) 5 ( n l n Tr(Pxn[A, B]*[A, B]) 5 0.

Since A, B P B were arbitrary, B is beable for K. n

Lemma 2.7. B is beable for K if and only if B is beable for Px , for all

x P [B_].

Proof. The ª ifº implication follows trivially from Lemma 2.6(iii). Con-

versely, suppose B is beable for K. By (iii), B is beable for Py , for all y P
_. Fix y. By (ii), B is beable for Pz , for all z P [By]. Finally, [B_] 5
~ y P _[By], so by (i), B is beable for Px , for all x P [B_]. n

We turn now to providing intrinsic operator algebraic characterizations

of beable, and maximal beable, status with respect to a normal state.

Theorem 2.8. Let B be a C*-algebra acting on *, and let 7 [ [B_].

Then:

(i) B is beable for K if and only if B # L(7 ’ ) % N, where N is an

abelian subalgebra of L(7).

(ii) B is maximal beable for K if and only if B 5 L(7 ’ ) % N, where

N is a maximal abelian subalgebra of L(7).
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Proof. (i) ª Þ º Suppose that B is beable for K. Clearly, we have

defined 7 in such a way that 7 reduces B. Thus, each element of B will

decompose uniquely into the direct sum of an operator on 7 ’ and an operator

on 7. We must show that whenever A1 % A2 and B1 % B2 are in B, then

A2B2 5 B2A2. In other words, we must show that elements of the set P7BP7

commute with each other.

Let A, B P P7BP7. Thus, A 5 P7 A8P7 for some A8 P B and B 5
P7B8P7 for some B8 P B. Let x P * be arbitrary. Then, x 5 y 1 z for

(unique) y P 7 ’ and z P 7. Since z P 7, B is beable for Pz (Lemma

2.7). Thus,

ABx 5 (P7A8P7P7B8)P7x 5 (P7A8P7P7B8)z (2.9)

5 (P7A8P7) B8z 5 (P7A8)B8z 5 A8B8z (2.1 0)

where the last two equalities hold because both A8 and B8 leave 7 invariant.

By symmetry, BAx 5 B8A8z. But, A8B8z 5 B8A8z since A8, B8 P B, z P 7,

and, B is beable for Pz. Thus, ABx 5 BAx, and since x was arbitrary, AB 5 BA.

Since A, B P P7BP7 were arbitrary, any two elements of P7BP7 commute.

ª Ü º Suppose that P7BP7 consists of mutually commuting operators.

Let x P _. Then, since B contains the identity, x P 7. Let A, B P B. Then,

we may write A 5 A1 % A2 and B 5 B1 % B2. Hence, ABx 5 (A1 % A2)(B1 %
B2)x 5 (A1 % A2)( 0 1 B2x) 5 A2B2x. By symmetry, BAx 5 B2A2x. But, since

elements of P7BP7 commute, A2B2x 5 B2A2x. Thus, ABx 5 BAx for any A,

B P B; that is, B is beable for Px. Furthermore, since x was an arbitrary

element of _, we see that B is beable for every state defined by a (unit)

vector in _. By Lemma 2.6(iii), B is beable for K.

(ii) We have proved in (i) that any algebra B which is beable for K will

be commutative in its action on [B_], and that any algebra B which is

commutative in its action on [B_] will be beable for K. To complete the

proof, then, it will suffice to show that if B 5 L(7 ’ ) % N, where N is

maximal abelian, then B is not properly contained in any beable algebra for K.

Suppose then that B # C, and that C is beable for K. (We show that

C 5 B.) Since C is beable for K, C is beable for Py whenever y P [C_]

(Lemma 2.7). Furthermore, [B_] # [C_]. Thus, C is beable for Pz whenever

z P [B_] [ 7. Now, P7 P N since the latter is maximal abelian and since

the former is the identity on 7. Thus, P7 P B # C. Let D be a self-adjoint

element of C. Then, for all z P 7, Dz 5 DP7z 5 P7 Dz, since C is beable

for Pz. That is, D leaves 7 invariant. However, since D is self-adjoint, it also

leaves 7 ’ invariant, and therefore D 5 (I 2 P7 )D(I 2 P7 ) % P7DP7 P
L(7 ’ ) % L(7).

Finally, let A P N. For any z P 7,
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P7DP7Az 5 P7DAz 5 DAz 5 ADz (2.11)

5 ADP7z 5 AP7DP7z (2.12)

The first, second, and fifth equalities hold since A and D leave 7 invariant.

The third equality holds since A, D P C, and C is beable for Pz. Hence,

P7DP7 P N8 # N and thus D P L(7 ’ ) % N. We have shown that Csa #
B, from which it follows that C # B and B is maximal beable for K. n

Example (Multiplication Algebra). Let M be the von Neumann algebra
of multiplications by essentially bounded (measurable) functions on L2( R ),

generated by the unbounded `multiplication by x’ (position) operator. Let c
be any (wave) function in L2 that is nonzero almost everywhere. It follows

then that M is maximal beable for c . Indeed, an elementary measure-theoretic

argument proves that c is a separating vector for M. Moreover, since M is

maximal abelian, M 5 M8 and c is a generating vector for M [23, Cor.
5.5.12]. Thus, 7 [ [M c ] 5 L2 and the maximal beable status of M for c
follows from Theorem 2.8(ii). Bohm’ s `causal’ interpretation of quantum

theory [6]Ð which only grants beable status to a particle’s positionÐ can be

understood as privileging M [15, Sec. 5].

Corollary 2.9. Let r be a normal state on L(*).

(i) If B is maximal beable for r , then B 5 B 2 .

(ii) If B is beable for r , then B 2 is beable for r as well.

Proof. (i) Let K be a positive trace-1 operator that induces the state r
on L(*). If B is maximal beable for K, then B 5 L(7 ’ ) % N, where N is

a maximal abelian subalgebra of L(7). Since N is a maximal abelian subalge-

bra of L(7), it follows that N is a von Neumann algebra. Therefore, B is a
von Neumann algebra.

(ii) Now suppose that B is beable for r . Then, B is contained in some

maximal beable algebra C for r . By part (i) of this Corollary, C 5 C 2 . Thus,

B 2 # C 2 5 C, and since beable status is hereditary, the conclusion

follows. n

Recall that a pure state r on a concrete C*-algebra A is called singular
just in case it is not ultraweakly continuous. Thus, a singular state is a pure,

nonnormal state.

Remark 2.1 0. Both parts of the above corollary, in particular (i), fail if

r is not assumed to be a normal state of L(*). For example, if r is a singular

state of L(*), then D r is maximal beable for r (see Example 2). However,

D r is not WOT-closed. For, recall that r ) K 5 0, where K is the ideal of
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compact operators in L(*) [23, Cor. 10.4.4]. Thus, K # D r , since r (AX )

5 0 5 r (A) r (X ) for any A P K and for any X P L(*). Moreover, K 2 5
L(*), and it follows that (D r )

2 5 L(*). But, clearly, D r Þ L(*) (*
separable), since there are no states dispersion-free on all of L(*)

(Remark 1.2).

3. BEABLE STATUS FOR UNBOUNDED OBSERVABLES

To this point, we have restricted discussion of ª beable statusº to bounded
operators. Of course, many of the observables of interest in quantum theory,

such as position and momentum, are represented by unbounded operators.

Thus, in this section we make use of the theory of algebras of unbounded

functions and operators (as expounded in ref. 23, Sec. 5.6, and Kadison [22])

in order to articulate the sense in which an unbounded operator can have

beable status with respect to a state. The section ends with results that capture
the essential content of the Heisenberg±Bohr indeterminacy principle for

canonically conjugate observables.

Let V be a von Neumann algebra acting on * and let R be a (possibly

unbounded) normal operator on *. R is said to be affiliated with V just in

case U*RU 5 R whenever U is a unitary operator in V8. Frequently this
relation is denoted by R h V. Now, if V is an abelian von Neumann algebra,

the set S of pure states of V, with the weak- * (i.e. pointwise convergence)

topology, is an extremely disconnected compact Hausdorff space, and V is

* -isomorphic to #(S) [23, Thm. 4.4.3, Thm. 5.2.1]. Under this isomorphism,

A P V goes to f (A) P #(S) defined by f (A)( v ) 5 v (A), for all v P S. A

normal function on an extremely disconnected compact Hausdorff space S
is defined as a continuous complex-valued function f defined on an open

dense subset S \Z of S such that lim v ® t ) f ( v ) ) 5 ` for each t in Z (where

v P S \Z), and a self-adjoint function on S is a real-valued normal function

on S [23, Def. 5.6.5]. Let 1(V) be the set of (normal) operators affiliated

with V. Then, 1(V) may be equipped with two operations 1 Ã(closed addition)

and ?Ã(closed multiplication) under which it is a commutative * -algebra [23,
Thm. 5.6.15]. Similarly, if 1(S) is the set of normal functions on S, then

there are operations 1 Ã, ?Ã, and * that extend the standard pointwise operations.

Moreover, the * -isomorphism f from V onto C(S) extends to a * -isomorphism

(which we denote again by f ) from 1(V) onto 1(S), providing us with what

we might call the ª extended function representationº of the abelian von

Neumann algebra V [23, Thm. 5.6.19].
For each family F of normal operators, there will be a unique smallest

(not necessarily abelian) von Neumann algebra W*(F) such that R is affiliated

with W*(F) for all R P F. We may call W*(F) the von Neumann algebra

generated by F. If F consists of a single normal operator R, then it follows
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that W*(R) is an abelian von Neumann algebra [23, Thm. 5.6.18]. Thus, R
is represented by a normal function f (R) on S, where S is now the set of

pure states of W*(R). If, as usual, sp(R) is defined to be the set of real
numbers l such that R 2 l I is not a one-to-one mapping of the domain of

R onto *, it follows that the range of the function f (R) is identical to sp(R)

[23, Proposition 5.6.2 0]. It is not difficult to see that the range of a normal

function is a closed (compact only if R is bounded) subset of C [23, p. 356].

Thus, sp(R) is closed in C .

Borel functions of R may be defined, via the isomorphism of 1(W*(R))
and 1(S), as follows [23, Remark 5.6.25]. Let Z be the closed, nowhere

dense subset of S such that f (R) is defined and continuous on S \Z. Let g
be an arbitrary element of @u(sp(R)), the algebra of complex-valued Borel

functions (finite almost everywhere) on sp(R). Define gÄ by

gÄ ( v ) [ H (g + f (R))( v ), v P S \Z
0, v P Z

(3.1)

Then gÄ is in @u(S), and there is a unique function h P 1(S) such that gÄ and
h agree on the complement of a meager (i.e., first category) set M [23, Lemma

5.6.22]. Note that since S is compact Hausdorff, the Baire Category Theorem

ensures us that S \M is dense in S. Thus, gÄ and h may not disagree on any

nonempty open setÐ a fact we shall make frequent use of in what follows.

Finally, g(R) is defined as f 2 1(h), as represented in the following diagram:

@u(sp(R)) Ð ®
g ® gÄ

@u(S)

½
½
¯

½
½
¯

g ® g(R) gÄ ® h

1(W*(R)) Ð ®
f

1(S)

The Borel functional calculus also provides a method of defining a projection-

valued measure E on sp(R) and, by extension, a projection-valued measure

on C [23, Thm. 5.6.26]. If C is a Borel subset of sp(R), then E(C) is defined
to be x C(R), where x C is the characteristic function of C. If C is any Borel

subset of C , then E(C) is defined to be E(C ù sp(R)). Note that for any C #
C , f (E(C)) is a characteristic function [since E(C) is a projection] and is

actually continuous on S [since f (E(C)) P #(S)].

In what follows, we specialize to the case where R is self-adjoint , so

that sp(R) # R , and f (R) is a self-adjoint function on S. We consider sp(R)
with the order relation inherited from R and with the relative topology

inherited from R . Recall that a convex subset of sp(R) is any subset C with

the following property: If a, b P C and there is a c P sp(R) such that a ,
c , b, then c P C. Note that the relative basis of sp(R) consists of convex
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sets with compact closure. If C # sp(R), we let clo C denote the closure of

C with respect to the relative topology.

Lemma 3.1. Let v be a pure state of W*(R), and let C be a convex
subset of sp(R) with compact closure.

(i) If v (E(C)) 5 1, then f (R) is defined at v and f (R)( v ) P clo C.

(ii) If C is open and f (R)( v ) P C, then v (E(C)) 5 1.

Proof. (i) Suppose that v (E(C)) 5 1, and consider x C P @u(sp(R)), the
characteristic function of C. Define

, x C P @u(S) as in (3.1), so
, x C( v ) 5 1

if f (R)( v ) P C, 5 0 otherwise. Let h be the unique function in C(S) that

agrees with
, x C on the complement of a meager set. Thus, E(C) [ f 2 1(h)

and h( v ) 5 v (E(C)) 5 1.

Suppose, for reductio ad absurdum , that f (R) is not defined at v , so
that

, x C( v ) 5 0. Since f (R) is self-adjoint, lim t ® v ) f (R)( t ) ) ® ` . Since C is

bounded, there is an open neighborhood U of v such that f (R)( t ) ¸ C for

all t P U. Thus,
, x C(U) 5 { 0}. However, since h is a continuous map from

S into { 0, 1} and h( v ) 5 1, there is an open neighborhood V of v such that

h(V) 5 {1}. But then
, x C and h disagree on the nonempty open set U ù V,

which is impossible. Therefore, f (R) is defined at v .
Again, suppose for reductio that f (R) is defined at v , but that f (R)( v ) ¸

clo C. Since f (R) is defined at v , it is continuous at v . Hence v ¸ [ f (R) 2 1(C)] 2

and there is an open neighborhood U of v such that U ù [ f (R) 2 1(C)] 5 0¤.

Thus, f (R)(U) ù C 5 0¤ and
, x C(U) 5 { 0}. Since h is continuous, there is

an open neighborhood V of v such that h(V) 5 {1}. But then
, x C and h

disagree on the nonempty open set U ù V, which again is impossible. There-
fore f (R)( v ) P clo C.

(ii) Suppose that C is open and f (R)( v ) P C. Let h [ f (E(C)). We

must show that h( v ) 5 1. Recall from (i) that h agrees on the complement

of a meager set with
, x C P @u(S). By assumption, then,

, x C( v ) 5 1. Suppose,

for reductio, that h( v ) 5 0. Since h is continuous, there is an open neighbor-
hood U of v such that h(U) 5 { 0}. Since f (R) is continuous on S \Z, V [
f (R) 2 1(C) is open in S \Z (and thus open in S, since S \Z is open in S).

Then,
, x C(V) 5 {1} and U ù V (which contains v ) is a nonempty open set on

which h and
, x C disagreeÐ a contradiction. Therefore, h( v ) 5 v (E(C)) 5 1. n

The next proposition confirms what we might otherwise expect: that R
may be assigned a dispersion-free value l P sp(R) exactly when all proposi-
tions of the form `the value of R lies in K,8 for all compact convex K ,
sp(R) that contain l, are true. (Clearly if this were not soÐ in particular, if

no proposition of that form were trueÐ then it would make no physical sense

to assign R any value whatsoever.)
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Proposition 3.2. Let v be a pure (dispersion-free) state of W*(R). Then

f (R) is defined at v if and only if there is a compact convex set K , sp(R)

such that v (E(K)) 5 1. If these conditions hold, then

{ f (R)( v )} 5 ù {K: K is a compact convex set in sp(R) and v (E(K)) 5 1}

Proof. ª Ü º Immediate from Lemma 3.1(i).

ª Þ º Suppose that f (R) is defined at v P S. Then, since there is an

open convex neighborhood C of f (R)( v ) such that clo C is compact (and
convex), v (E(C)) 5 1 [by Lemma 3.1(ii)]. Moreover, since a projection-

valued measure is monotone and states are order-preserving,

1 5 i E(clo C) i $ v (E(clo C)) $ v (E(C)) 5 1 (3.2)

which entails v (E(clo C)) 5 1.

Suppose now that the above equivalent conditions hold for f (R) and v ,

and let Y denote the intersection in the statement of this proposition. By

assumption, there is at least one compact convex set K such that v (E(K)) 5
1, so that Y is nonempty. Let L be any other such set where v (E(L)) 5 1.

Then, by Lemma 3.1(i), f (R)( v ) P clo L 5 L. Therefore, f (R)( v ) P Y.
Finally, to see that f (R)( v ) is the unique point in Y, suppose that l P

Y yet l Þ f (R)( v ). Since sp(R) is Hausdorff, there is an open convex

neighborhood C in sp(R) such that f (R)( v ) P C but l ¸ clo C. (We choose

C such that its closure is compact.) Since f (R)( v ) P C and C is open,

v (E(clo C)) 5 1 [by Lemma 3.1(ii)]. Therefore, l ¸ Y, contradicting our

assumption. It follows that f (R)( v ) is the unique element of Y. n

Given a von Neumann algebra B, beable for a state r , it is natural to ask
when an unbounded self-adjoint operator R (or a family of such observables)

affiliated with B can be taken to have beable status for r together with the
observables in B. This would require that r be a mixture of dispersion-free

states on B each of which restricts to a pure state on W*(R) # B that permits

a value for R to be defined in accordance with the above proposition. As we
show in Theorem 3.6 below, a sufficient condition for this is that r determine

a finite expectation value for R.

While pure states of W*(R) correspond to points of S, the general state

r (pure or mixed) of W*(R) corresponds uniquely, via the Riesz Representation

Theorem, to a probability measure m r on S. (A pure state corresponds to a

measure concentrated at a single point.) That is,

r (A) 5 # S

f (A)(s) d m r (s), A P W*(R) (3.3)

Since f (R) is an unbounded function on S, its integral with respect to m r
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may or may not converge to a finite value. In order to capture the idea

that some states may be used consistently to assign finite (not necessarily

dispersion-free) expectation values to unbounded operators, we introduce the
following notion of a well-defined state:

Definition. Suppose that r is a state of W*(R) and that m r is the measure

on S corresponding to r . If * S f (R) d m r , ` , we say that r is a well-defined
state for R.

As should be the case, this definition entails that if r is a pure state,

then r is well defined for R if and only if f (R) is defined at r . Moreover,

by ref. 23, Thm. 5.6.26, a vector state v x is well defined for R if and only
if x is in the domain of R. Of course, this definition may easily be extended

to any von Neumann algebra V, such that R is affiliated with V. If r is a

state of V, we say that r is well defined for R just in case r ) W*(R) is well

defined for R.

Remark 3.3. Of course it is possible for r to be well defined for R, but

not for polynomials in R. For example, let R 5 Q be the the multiplication

by x operator on L2( R ). Then, one can easily construct unit vectors in $(Q) 2
$(Q2) whose corresponding states will be well defined for Q but not for Q2.

Pure well-defined states, however, are extremely well-behaved:

Proposition 3.4 (Cont-FUNC). Let R be a (possibly unbounded) self-

adjoint operator on * and suppose that v is a pure state of L(*) that is well
defined for R. Then, v ( f (R)) 5 f ( v (R)), for any f P #(sp(R)).

Proof. Note that fÄ ) S \ Z is continuous, being the composition of two

continuous functions, f and f (R) ) S \ Z. Moreover, since the normal function h
agrees with fÄ on the complement of a meager set, h must agree with fÄ

throughout S \Z. Thus, v ( f (R)) 5 h( v ) 5 fÄ ( v ) 5 f ( v (R)). n

Lemma 3.5. Let r be any state (pure or mixed) of W*(R), and let Fn [
E(( 2 n, n]), where E is the projection-valued measure associated with R. If

r is well defined for R, then limn ® ` r (Fn) 5 1.

Proof. Let gÄ n be defined as gÄ n( v ) 5 1 if f (R)( v ) P ( 2 n, n] and gÄ n( v ) 5
0 otherwise. Then, Fn [ f 2 1(hn), where hn is the unique function in #(S)

which agrees with gÄ n on the complement of a meager set. Clearly, then, {hn}

converges pointwise to x (S \ Z), the characteristic function of S \Z, as n ® ` .

Thus, r (Fn) 5 * S hn d m r , and

lim
n ® `

r (Fn) 5 lim
n ® ` # S

hn d m r 5 # S

x (S \ Z) d m r 5 m r (S \Z) (3.4)

where the second equality follows from the Monotone Convergence Theorem

[32, Thm. 1.26]. Hence, m r (Z) 5 1 2 limn ® ` r (Fn).
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Since f (R) is a self-adjoint function on X, we may decompose Z as

Z+ ø Z 2 , where Z+ is the set of points v of S such that lim t ® v f (R)( t ) 5
1 ` and Z 2 is the set of points v of S such that lim t ® v f (R)( t ) 5 2 ` [23,
p. 344]. Now, let f+ [ max{ f (R), 0} be the positive part of f (R) and let

f 2 [ 2 min{ f (R), 0} be the negative part. Then,

# S

f+ d m r 5 # (S \Z 1 )

f+ d m r 1 # Z 1

f+ d m r (3.5)

5 # (S \Z 1 )

f+ d m r 1 ( m r (Z+) ? 1 ` ) (3.6)

and similarly,

# S

f 2 d m r 5 # (S \Z 2 )

f 2 d m r 1 ( m r (Z 2 ) ? 2 ` ) (3.7)

By definition, * S f (R) d m r is defined only if either (3.6) or (3.7) is finite,
and then

# S

f (R) d m r [ # S

f+ d m r 2 # S

f 2 d m r (3.8)

Thus, m r (Z) 5 m r (Z+) 1 m r (Z 2 ), and if m r (Z) . 0, then either (3.6) or (3.7)

is infinite and either * S f (R) d m r is undefined or 5 6 ` . Therefore, * S f (R)

d m r has a finite value only if limn ® ` r (Fn) 5 1. n

Theorem 3.6. Suppose B is a von Neumann algebra and B is beable
for r . Suppose that {Rj} is a countable family of self-adjoint operators affili-

ated with B such that, for all j P N , r is a well-defined state for Rj. Then,

there is a probability measure m on the set of dispersion-free states S of B
such that

r (A) 5 # S

v s(A) d m (s) (A P B) (3.9)

and for every v s P S and j P N , v s is well defined for R j.

Proof. Since B is beable for r , we have a probability measure m on the
set of dispersion-free states T of B such that

r (A) 5 # T

v t(A) d m (t) (A P B) (3.1 0)

We will show that m (S) 5 1, where S is the subset of T consisting of those

states that are well defined for each Rj.
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Fix j P N . Let W*(R j) be the von Neumann algebra generated by Rj ,

let E j be the projection-valued measure on R induced by Rj , and let F j
n [

E j(( 2 n, n]). Let

Zj [ {t P T: v t(F
j
n) 5 0, for all n P N } (3.11)

It is not difficult to verify that Zj is a measurable subset of T. Suppose, for

reductio, that m (Zj) 5 d . 0 so that m (T \Zj) 5 1 2 d . Choose any m P
N . Then,

r (F j
m) 5 # Zj

v t(F
j
m) d m (t) 1 # (T \Zj)

v t(F
j
m) d m (t) (3.12)

5 0 1 # (T \Zj)

v t(F
j
m) d m (t) (3.13)

# m (T \Zj) 5 1 2 d (3.14)

(3.13) follows by the definition of Zj , and the inequality in (3.14) follows

since v t(F
j
m) # |F j

m| 5 1 for all t P T. Since m was arbitrary,

limn ® ` r (F j
n) # 1 2 d . By Proposition 3.5, r ) Aj does not correspond to a

convergent measure, contradicting our assumption that r is well defined for
Rj. Thus, m (Zj) 5 0. Since m is countably additive, m ( ø `

j 5 1 Zj) 5 0.

Let S 5 T \ ( ø `
j 5 1 Zj). Then, for A P B,

r (A) 5 # T

v t(A) d m (t) 5 # S

v t(A) d m (t) 1 # ø Zj

v t(A) d m (t) (3.15)

5 # S

v t(A) d m (t) 5 # S

v s(A) d m (s) (3.16)

where the penultimate equality follows since m ( ø `
j 5 1 Zj) 5 0. Finally, suppose

that v P S; that is, for each j there is an m such that v (F j
m) [

v (E j(( 2 m, m])) . 0. But v (F j
m) P { 0, 1} since v is dispersion-free on Aj

and F j
m is a projection. Thus, for each j there is an m such that v (F j

m) 5 1,
and by Lemma 3.1(i), v is well defined for each Rj. Therefore, r is a mixture

of dispersion-free states of B, all of which are well defined for each Rj. n

Definition. Let {R l : l P L } be a family of (possibly unbounded) self-

adjoint operators acting on a Hilbert space *, and r a state of L(*). We say

that the observables {R l : l P L } have joint beable status for r if there is a
subalgebra B # L (*), to which each R l is affiliated, such that r is a mixture

of dispersion-free states on B m r -measure-one of which are well defined for

each R l . Thus, a family of observables has joint beable status in a state just

in case it is possible to think of the observables as possessing simultaneously
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determinate values without contradicting the state’s expectation values. In

particular, when r is well defined on all the observables {R l : l P L }, their

joint beable status for r (sufficient conditions for which are identified in
Theorem 3.6 above) guarantees that the expectation values r assigns to each

R l can be interpreted as arising due to ignorance about the precise values

jointly possessed by the observables in {R l : l P L }.

As should be the case, the bounded observables in any subalgebra B #
L(*) beable for r have joint beable status for r . And, of course, any single

bounded observable RÐ being affiliated with the abelian von Neumann alge-
bra it generatesÐ has beable status in any state. However, when R is

unbounded, this need not be true, as the next results show.

Proposition 3.7. Let A, B be canonically conjugate self-adjoint

unbounded operators on some Hilbert space *, that is, they satisfy [A, B] 5
6 iI with sp(A) 5 sp(B) 5 R . Let r be a state of L(*) such that r ) W*(A) is

pure, and r is well defined for A. Then r (E(C)) 5 0 for any compact interval

C in R , where E is the projection-valued measure for B.

Proof. We show first that r (cos tB) 5 0 for all t P R \ { 0}. For this, let

Us [ eisA and let W t [ eitB. Then, invoking the Weyl form of [A, B] 5 6 iI
(taking either sign), we have UsW t 5 e 6 istW tUs for all s, t P R . Thus,

r (UsW t) 5 e 6 ist r (W tUs). Moreover, since Us P W*(A), r is dispersion-free

on Us and r (Us) r (Wt) 5 e 6 ist r (Wt) r (Us). Again, since r is dispersion-free on

W*(A), r (Us) Þ 0 for all s P R , and r (Wt) 5 e 6 ist r (W t) for all s, t P R . Let

t 5 t0 Þ 0. Then we may choose s such that e 6 ist0 Þ 1, and hence

r (W t0) 5 0. But t0 was an arbitrary nonzero number; thus, r (W t) 5 0 for all
t Þ 0. Moreover, r (Wt) 5 r (cos tB) 1 i r (sin tB), from which it follows that

r (cos tB) 5 0 for all t Þ 0.

Recall that

cos2n u 5
1

22n 1 2n

n 2 1
1

22n 2 1 o
n 2 1

m 5 0 1 2n

m 2 cos 2(n 2 m) u (3.17)

Let F n
t [ cos2n tB. From (3.17) we can deduce the operator identity:

cos2n tB 5
1

22n 1 2n

n 2 1
1

22n 2 1 o
n 2 1

m 5 0 1 2n

m 2 cos 2(n 2 m)tB (3.18)

Thus, from the linearity of r , in combination with the result of the previous

paragraph, we may conclude that r (F n
t ) 5 2

2 2n(2n
n ) [ k(n) whenever t Þ 0.

And, using Stirling’ s approximation for the factorial, k(n) ’ ( p n) 2 1/2 for

large n, whence limn ® ` k(n) 5 0.

Now let C be a compact interval in R . Then, r (F n
t E(C)) # r (F n

t ) 5 k(n),

for all n P N and all t Þ 0. Consider the extended function representation
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1(S) of the abelian von Neumann algebra W*(B). Let T [ { v P S: v (E(C)) 5
1}. [T is clopen since it is the support of the continuous idempotent function

f (E(C)).] Fix n P N and let ft [ f (F n
t E(C)) for each t P R \ { 0}. We claim

that ft converges pointwise to x T as t ® 0. Note first that f (B) is defined at

all points of T and f (B)(T) # C by Lemma 3.1(i). Now, for any e . 0, we

may choose t small enough that 1 2 cos2n tx , e for all x P C (since C is

compact and n is fixed). Thus, for any v P T (and using Cont-FUNC in the

fourth step),

x T( v ) 2 ft( v ) 5 1 2 f (F n
t E(C))( v ) 5 1 2 v (F n

t E(C)) (3.19)

5 1 2 v (F n
t ) 5 1 2 cos2n(t v (B)) (3.2 0)

5 1 2 cos2n(t f (B)( v )) , e

which is what we needed to show.

Since ft converges pointwise to x T we may apply the Dominated Conver-

gence Theorem [32, Thm. 1.34] to conclude that

lim
t ® 0 # S

ft d m r 5 # S

x T d m r 5 m r (T) 5 r (E(C)) (3.21)

However, since k(n) $ r (F n
t E(C)) 5 * ft d m r , for all t Þ 0, it follows that

k(n) $ r (E(C)). Since this is true for all n P N , and limn ® ` k(n) 5 0, it

follows that r (E(C)) 5 0. n

Corollary 3.8. Let A, B be as above. Then m r (Z) 5 1, where Z is the

set of states at which B is not defined. In particular, when r is a state of

L(*) such that r ) W*(A) is pure and r is well defined for A, then B does not
have beable status for r .

Proof. Let En [ E([ 2 n, n]). Let Sn [ { v P S: v (En) 5 1}. Then, from

the preceding proposition, r (En) 5 0, and thus m r (Sn) 5 0, for all n P N .

However, ø `
n 5 1 Sn 5 S \Z, and it follows from the countable additivity of

m r that m r (S \Z) 5 0. n

Example (Heisenberg±Bohr Indeterminacy Principle). Let D and Q be

the momentum and position operators for a particle in one dimension with

state space L2( R ). It is a well-known consequence of [Q, D] 5 i " I that the

product of the dispersions of Q and D, for all wavefunctions c P $(QD) ù
$(DQ), is bounded below by " . The standard Copenhagen interpretation of

this uncertainty principle is not simply that a precision momentum measure-

ment necessarily and uncontrollably disturbs the value of position and vice

versa, but that D and Q can never in reality be thought of as simultaneously
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determinate. The warrant for this stronger `indeterminacy principle’ is not

obvious, since there appears to be nothing preventing the view that the

dispersion required in (say) a particle’ s momentum when its position is
measured simply reflects our loss of knowledge about that momentum Ð not

any breakdown in the applicability of the momentum concept itself. However,

the foregoing results allow us to exhibit the indeterminacy principle as a

direct mathematical consequence of [Q, D] 5 i " I [and without taking any a
priori stand on precisely which (if any) of the many subalgebras with beable

status for a given state should be taken to represent observables that actually
possess determinate values]. As we have seen, a necessary (and sufficient)

condition for thinking of Q and D as having simultaneously determinate

values in a state r is that they have joint beable status for r . This, in turn,

requires that r be a mixture of states [on some subalgebra of L(L2)] each of

which is pure on both W*(Q) and W*(D) and well defined on both Q and

D. Yet, as Proposition 3.7 and its corollary make clear, satisfaction of these
requirements for Q precludes their satisfaction for D and vice versa. It follows

that there is no state r for which Q and D have joint beable status, and the

indeterminacy principle is proved.

4. BEABLE SUBALGEBRAS DETERMINED BY A FAMILY OF
PRIVILEGED OBSERVABLES

It is evident from Theorem 2.8 that any subspace 7 # * containing

_, together with any maximal abelian subalgebra of L(7), determines a

maximal beable subalgebra B # L(*) for K. In the present section we take

steps to eliminate this arbitrariness. Let A be a C*-algebra and let R be a
mutually commuting family of ª privilegedº observables drawn from A. We

may then inquire into the structure of all beable algebras for a given state

that contain the commuting family R.

The reasons why one might want to demand a priori that certain preferred

observables R be included in the subalgebra with beable status will become

apparent when we apply our results to the orthodox Copenhagen interpretation
of quantum theory below. We shall also be requiring that a beable subalgebra

B for r containing some set of observables R be (at least implicitly) definable

in terms of R, r , and the algebraic operations available within A. This idea

is captured by requiring that B be invariant under spatial automorphisms of

A that fix both R and the state r . [We say that the spatial automorphism F
induced by unitary U fixes r just in case r U 5 r , where r U is defined by
r U (A) 5 r (U*AU ) for all A in A.]

Definition. Let A be a C*-algebra, let R be any mutually commuting

family of observables in R, and let r be a state of A. Then, for any subalgebra

B of A, we say that B is R-beable for r just in case:
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(Beable): B is beable for r .

(R-Priv): R # B.

(Def ): For any unitary U P A, if U P R8 and r U 5 r , then UBU* 5 B.

We say that B is maximal R-beable for r if and only if B is maximal with

respect to the properties (Beable), (R-Priv), and (Def) (noting that, by Zorn’ s

lemma, maximal R-beable algebras exist for any state).

4.1. R-Beable Algebras for Normal States.

We now specialize to the case where A 5 L(*), and where r is a

normal state of L(*). In this case, we may replace r U 5 r in (Def) by

UKU* 5 K, where K is the trace 1 operator that defines the state r . We shall

soon see that the above requirements, for certain R and K, suffice to determine

a unique maximal R-beable algebra for K (cf. Corollary 4.6 below).

Lemma 4.1. Suppose that B is a C*-algebra acting on some Hilbert

space *, and that r is a normal state of B. If B is R-beable for r , then B 2

is also R-beable for r .

Proof. (R-Priv) R # B # B 2
. (Beable) See Corollary 2.9(ii). (Def)

Suppose that U is a unitary element of L(*) such that U P R8 and UKU* 5
K. Then, since B satisfies (Def), UBU* 5 B. Since the spatial automorphism

F of L(*) induced by U is a WOT-homeomorphism from L(*) to L(*), it

follows that F (B 2 ) 5 F (B) 2 5 B 2 .

In order to prove the main result of this section, we will need to make

use of the following lemma:

Lemma 4.2. Let Q P L(*) be a projection, and let V be a von Neumann

algebra acting on *. Suppose that for every unitary operator U P V8, [UQU*,

Q] 5 0. Then, Q P V.

Remark 4.3. Recall that every element of a C*-algebra (such as V8) is

expressible as a linear combination of (four) unitary elements in that algebra
[23, Theorem 4.1.7]. Thus, we may reformulate Lemma 4.2 equivalently as:

If [UQU*, Q] 5 0 for each U P V8, then [U, Q] 5 0 for each U P V8.

Proof. To show that Q P V( 5 V9), it will suffice to show that [Q, H ] 5
0 for any self-adjoint H P V8 (since V8 is a *-algebra). If H 5 H* P V8,
then Ut [ eitH P V8 is unitary for all t P R . By hypothesis, then, [U tQU 2 t,

Q] 5 0, for all t P R .
Since H is bounded, sp(H ) is a compact subset of R . Consider the

one-parameter family {eitx}t P R of (complex-valued) continuous functions on

sp(H ). Clearly, this family converges uniformly to the constant 1 function

as t ® 0. Employing the continuous function calculus [23, p. 239], it follows



Maximal Beable Subalgebras 2465

that eitH converges uniformly to I as t ® 0. Thus, limt ® 0(UtQU 2 t) 5 Q. Since

UtQU 2 t and Q commute, we may write Q 5 At 1 Bt , UtQU 2 t 5 At 1
Ct , where A t , Bt , and Ct are pairwise orthogonal projections. Then, 0 5
limt ® 0i UtQU 2 t 2 Q i 5 limt ® 0i Bt 2 Ct i . Choose s . 0 such that i Bt 2 Ct i
, 1/2 for all t , s. Suppose that Bt Þ 0 for some t , s. Then 5(Bt) Þ { 0}

and we may choose a unit vector x P 5(Bt). But then i (B t 2 Ct)x i 5 i x i 5
1, which contradicts the fact that i Bt 2 Ct i , 1±2 . Thus, Bt 5 0 for all t , s,
and by symmetry Ct 5 0 for all t , s. Hence, for all t , s, UtQU 2 t 5 At

5 Q, i.e., [Ut , Q] 5 0.
Employing the functional calculus for sp(H ) again, we see that t 2 1(eitx

2 1) converges uniformly to ix as t ® 0; thus, t 2 1(eitH 2 I) ® iH uniformly

as t ® 0. We can then compute

( 2 i)(iH )Q 5 2 i[lim
t ® 0

(t 2 1(U t 2 I))]Q 5 2 i[lim
t ® 0

(t 2 1(U tQ 2 Q))] (4.1)

5 2 i[lim
t ® 0

(t 2 1(QUt 2 Q))] 5 2 iQ[lim
t ® 0

(t 2 1(Ut 2 I)] (4.2)

5 2 iQ(iH ) (4.3)

The second (and fourth) equalities follow since right (and left) multiplication

by Q is norm continuous. The third equality follows since there is an s . 0
such that [Ut , Q] 5 0 for all t , s. Therefore, [H, Q] 5 0. n

Remark 4.4. As before, let _ [ 5(K ). Consider the family of subspaces

= of * such that = contains _ and = is invariant under each element of

R. Since this family is closed under intersection, it will contain a unique
smallest element which we denote by 6. It is not difficult to see then that

6 5 [R9_]. [Note that since R is (trivially) closed under taking adjoints, it

follows that W*(R) 5 R9.] Indeed, [R9_] contains _ and is invariant under

each element of R. Thus, 6 # [R9_]. Conversely, [R9_] is the smallest

subspace of * that contains _ and that is invariant under each element in

R9. However, 6 contains _ and 6 is invariant under each element in R9
(since P6 P R8 5 R - ). Therefore, 6 5 [R9_].

Theorem 4.5. Let 6 be the smallest subspace of * such that 6 contains

5(K ) and 6 is invariant under R (so 6 5 [R9_]). Then, every maximal

R-beable algebra for K has the form L(6 ’ ) % M, where W*(R)P6 # M #
W*(R,K )P6, and M is maximal abelian in W*(R, K )P6.

For convenience, we call algebras of the above form MRB-algebras for

K. (With this proof in hand, we can justifiably call these algebras maximal
R-beable algebras.)

Proof. The proof proceeds in two stages. First, we show that every

MRB-algebra for K is, in fact, a maximal R-beable algebra for K [(i) below].
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Second, we show that every R-beable algebra for K is contained in some

MRB-algebra for K [(ii) below].

(i) Suppose that B is an MRB-algebra for K. That is, B 5 L(6 ’ )
% M, where M is a maximal abelian subalgebra of W*(R, K )P6, and

W*(R)P6 # M.

(R-Priv) Since R leaves 6 invariant and RP6 # W*(R)P6 # M, it

follows that R # B.

(Beable) Let 7 [ [B_]. By construction of 6, 6 contains _ and is

invariant under each element of B. However, 7 is the smallest subspace of
* that contains _ and is invariant under each element in B. Hence, 7 #
6. Conversely, 7 is invariant under each element of R since R is contained

in B. Thus, 6 5 7 and B 5 L(7 ’ ) % M. But since M is an abelian

subalgebra of W*(R, K )P6, it is an abelian subalgebra of L(7). By Theorem

2.8(i), B is beable for K.

(Def) We show first that P6 is in the center of W*(R, K ). Since R ø {K }
is a self-adjoint set, W*(R, K ) 5 (R ø {K })9. Let A P (R ø {K })8 5
R8 ù {K }8, and let Bx be a generator of 6. (That is, x P _ and B P R9.)
Since A commutes with K, A leaves _ invariant. Further, [A, B] 5 0 since

A P R8 5 R - . Thus, A(Bx) 5 B(Ax) P [R9_] [ 6, and we may conclude

(by linearity and continuity of A) that A(6) # 6. Since the same argument
applies to A* (which is also contained in R8 ù {K}8), 6 reduces A; and

thus, P6 P (R ø {K })9. On the other hand, P6 is clearly contained in (R ø
{K })8 since 6 is invariant under the action of K and under the action of the

self-adjoint set R.

Let U P (R ø {K })8 5 R8 ù {K }8. Since P6 P (R ø {K })9, it follows

that UP6 5 P6U. Now let B P B. Then,

B 5 (I 2 P6)B(I 2 P6) % P6BP6 (4.4)

where P6BP6 P W*(R, K )P6. Since 6 reduces U, the spatial isomorphism

F induced by U factors into F 1, the spatial automorphism on L(6 ’ ) induced
by (I 2 P6)U(I 2 P6), and F 2, the spatial automorphism on L(6) induced

by P6UP6. Hence,

F (B) 5 F 1((I 2 P6)B(I 2 P6)) % F 2(P6BP6) (4.5)

Trivially, F 1((I 2 P6)B(I 2 P6)) P L(6 ’ ). Furthermore, since M is a subset

of W*(R, K )P6, it follows that F 2 is the identity automorphism on M. To

see this, note that

P6UP6 P P6(R ø {K })8P6 5 [W*(R, K )P6]8 (4.6)

where the final equality follows from [23, Proposition 5.5.6] and the fact

that P6 P (R ø {K })8. Thus, P6UP6 commutes with every operator in



Maximal Beable Subalgebras 2467

W*(R, K )P6, and F 2 is the identity automorphism on W*(R, K )P6. It then

follows that

F (B) 5 F 1((I 2 P6)B(I 2 P6)) % F 2(P6BP6) (4.7)

5 F 1((I 2 P6)B(I 2 P6)) % P6BP6 (4.8)

which is obviously contained in B. Since B was an arbitrary element of B,

it follows that F (B) # B. Moreover, this map is onto, for given A P B,

F ((I 2 P6) F 2 1(A)(I 2 P6) % P6AP6)

5 (I 2 P6)A(I 2 P6) % F 2(P6AP6) (4.9)

5 (I 2 P6)A(I 2 P6) % P6AP6 5 A (4.1 0)

Therefore, F (B) 5 B.
(Maximality) To see that B is a maximal R-beable algebra for K, it

suffices to show that (a) every R-beable algebra for K is contained in an

MRB-algebra for K, and (b) if B1 and B2 are distinct MRB-algebras for K,

then B1 Ü B2. We establish (a) in (ii) below. For (b) it suffices to note that

if B1 and B2 are distinct MRB-algebras for K, then B1 5 L(6 ’ ) % M1 and
B2 5 L(6 ’ ) % M2, where M1 and M2 are distinct maximal abelian subalge-

bras of W*(R, K )P6 [each containing W*(R)P6]. Thus, M1 Ü M2 and B1

Ü B2.

(ii) Suppose that B is R-beable for K. Since B # B 2 , it will suffice

to show that B 2
is contained in an MRB-algebra for K because, by Lemma 4.1,

B 2
is R-beable for K. Thus, we may assume that B is a von Neumann algebra.
Once again, let 7 [ [B_]. Obviously, 7 reduces B, and P7 P B8.

Since B is a von Neumann algebra, BP7 is a von Neumann algebra acting

on 7 [23, Proposition 5.5.6]. Likewise, B(I 2 P7 ) is a von Neumann algebra

acting on 7 ’ . Let M [ BP7. Then we have B 5 B(I 2 P7 ) % M, where

each summand is a von Neumann algebra. Since B is beable for K, M is in

fact an abelian subalgebra of L(7) [Theorem 2.8(i)]. We show that 7 5 6
and that M # W*(R, K )P6. [Clearly, once 7 5 6 has been established, we

will automatically have W*(R)P6 # M, since W*(R) # B and W*(R) leaves

6 invariant.]

6 is clearly a subspace of 7 since R # B. In order to show that 7 #
6, let F be a projection in B. Since 7 reduces F, F 5 F 0 % F P L(7 ’ ) %
M. Choose u P R such that e 2 i u Þ 6 1. Let U 5 P7 ’ % P6 % (ei u P7 ` 6 ’ ),
and let U 5 P6 % (ei u P7 ` 6 ’ ) P L(7). Since R # B, R leaves 7 invariant,

and (by construction) R leaves 6 invariant. Thus, R leaves 6 ’ Ù 7 invariant,

and U P R8. Furthermore , _ # 6, and U ) 6 5 I. Thus, U P {K }8. Since

U P (R8 ù {K }8), it follows by (Def) that UBU* 5 B; and since 7 reduces
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U, it also follows that UMU* 5 M. In particular, both F and UFU* are in

the abelian algebra M.

Since F and UFU* commute, there are mutually orthogonal projections
A, B, C on 7 such that F 5 A 1 B, UFU* 5 A 1 C. To see that B 5 0,

let v P 5(B) # 7. Then,

Fv 5 v (4.11)

UFU*v 5 0 (4.12)

Now, we may also write v 5 w 1 w8 (uniquely), where w P 6 and w8 P
(6 ’ Ù 7). Using (4.12) [and U 2 1( 0) 5 0], we get

FU*(w 1 w8) 5 0 (4.13)

But, by the definition of U (and using v 5 w 1 w8), this implies that

F(w 1 e 2 i u w8) 5 0 (4.14)

and

F(v 2 w8 1 e 2 i u w8) 5 0 (4.15)

Next, using (4.11) and e 2 i u Þ 1

Fw8 5 (1 2 e 2 i u )
2 1v (4.16)

Thus,

UFU*Fw8 5 (1 2 e 2 i u )
2 1UFU*v (4.17)

and we can see by (4.12) that this last expression vanishes. However, UFU*
and F commute on w8 ( P 7). It follows that F(UFU*)w8 5 0 as well. We

can then compute, using the definition of U and e 2 i u Þ 0,

FUFw8 5 0 (4.18)

By (4.16),

FU[(1 2 e 2 i u )
2 1v] 5 0 (4.19)

But since (1 2 e 2 i u )
2 1 Þ 0,

FUv 5 0 (4.2 0)

FU(w 1 w8) 5 0 (4.21)

F(w 1 ei u w8) 5 0 (4.22)

again using the definition of U in the move to (4.22). But now (4.14) and

(4.22) together entail
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F(w 1 e 2 i u w8 2 (w 1 ei u w8)) 5 0 (4.23)

F((e 2 i u 2 ei u )w8) 5 0 (4.24)

However, e 2 i u 2 ei u Þ 0 (since e 2 i u Þ 6 1). Thus, by (4.22) and (4.24),

Fw 5 0 (4.25)

Fw8 5 0 (4.26)

Fv 5 F(w 1 w8) (4.27)

5 0 (4.28)

Thus, Fv 5 0. But, by (4.11), Fv 5 v. Hence, v 5 0 and B 5 0.

Now we may repeat a similar argument with F replaced by UFU*, and
U*(UFU*)U 5 F. (The only change to the argument is that, throughout, u
must be interchanged with 2 u , since U is interchanged with U*.) It follows

that C 5 0 as well, and thus UFU* 5 F.

We chose U, however, so that if UF 5 FU, then P6F 5 FP6. Indeed,

a routine calculation shows that P6 5 (ei u 2 1)
2 1[ei u P7 2 U ]. Furthermore,

FP6 5 [(I 2 P7)F(I 2 P7) 1 P7)FP7]P6 (4.29)

5 [(I 2 P7)F(I 2 P7) 1 F ]P6 (4.3 0)

5 FP6 5 P6F 5 P6F (4.31)

since P6(I 2 P7 ) 5 0. Thus, FP6 5 P6F, for all projections F P B. Since
B is (by hypothesis) a von Neumann algebra, each A P B is a norm limit

of linear combinations of projections in B. Thus, AP6 5 P6A for all A P
B and 6 reduces B. Since _ # 6, and since 7 is the smallest subspace

that contains _ and reduces B, it follows that 7 # 6.

We have now shown that 7 5 6 and that, accordingly, M is an abelian

von Neumann subalgebra of L(6). All that remains is to show that M # W*
(R, K ) P6. Since M is a von Neumann algebra, it will suffice to show that

for any projection Q P M, Q P W* (R, K ) P 6. Let U P (R8 ù {K }8).
Then, by (Def), UBU* 5 B. Since U is reduced by 6 5 [R9_], UMU* 5
M. In particular, Q, UQU* P M. Since M is abelian, UQU*Q 5 QUQU*.

But U was an arbitrary unitary operator in R8 ù {K }8. Applying Lemma

4.2, with V 5 W*(R, K ), we may conclude that Q P W*(R, K ). Moreover,
QP6 5 Q, since Q # P6. Thus, Q P W* (R, K )P6 and B is contained in

an MRB-algebra for K. n

Theorem 4.5 shows that the requirement that B be maximal R-beable

places a significant restriction on the structure of B. However, it still does

not follow that there is always a unique maximal R-beable algebra for K.
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Example. Let * be three-dimensional, choose an orthonormal basis {r1,

r2, r3}, and let R 5 {R}, where R is a self-adjoint operator on * with only

two eigenvalues and corresponding eigenspaces, [r1] and [r2, r3]. Choose
another orthonormal basis {w1, w2, w3} so that the vectors w1 and w2 do not

lie inside either of R’ s eigenspaces, and P[r2, r3] w1 and P[r2, r3] w2Ð the orthogo-

nal projections of w1 and w2 onto the plane [r2, r3]Ð are neither parallel nor

orthogonal. Let K be any positive, trace-1 operator with three distinct nonzero

eigenvalues corresponding to the eigenspaces [w1], [w2], and [w3]. By

construction, {P[r1 ]w1, P[r2,r3]w1, P[r2,r3 ]w2} spans *, and thus 6 5 [R9_] 5
*. It follows from Theorem 4.5 that any maximal abelian subalgebra of

W*(R, K ) containing R is maximal R-beable for K. In fact, W* (R, K ) contains

two such subalgebras.

Let A1 be any nondegenerate, self-adjoint operator with one-dimensional

(mutually orthogonal) eigenspaces [P[r2,r3]w1], [P[r2,r3]w1] ’ Ù [r2, r3], and [r1].

Let A2 be any nondegenerate, self-adjoint operator with one-dimensional
eigenspaces [P [r2,r3 ]w2], [P[r2,r3]w2] ’ Ù [r2, r3], and [r1]. Since W*(R, K ) con-

tains the spectral projections of both R and K, and the projections in W*(R,

K ) form an ortholattice, the projections onto all the eigenspaces of each Ai

lie in W,*(R, K ) (for example, [P[r2, r3]w1] may be expressed as ([w1] Ú [r1])

Ù [r2, r3], and similarly for [P[r2,r3]w2]). It follows that each Ai P W*(R, K ).
Let W*(Ai) be the von Neumann algebra generated by Ai. Since the projections

onto [P[r2,r3 ]w1] and [P[r2,r3]w2] fail to commute (by construction of w1 and

w2), A1 and A2 do not commute and W*(A1) and W*(A2) are distinct. And,

since each A i is nondegenerate, each W*(Ai) is maximal abelian in L(*), and

thus maximal abelian in W*(R, K ). Moreover, R P W*(Ai) since R commutes

with each Ai. Therefore, W*(A1) and W*(A2) are distinct maximal R-beable
algebras for K.

Although the above example shows that we cannot always expect there

to be a unique maximal R-beable algebra for K, there are at least two

important cases where uniqueness does hold:

Corollary 4.6. (i) If K P R8, then the unique maximal R-beable
algebra for K is L(6 ’ ) % W*(R, K ) P6.

(ii) If K 5 Pv , for some v P *, then the unique maximal R-beable

algebra for K is L(6 ’ ) % W*(R)P6.

Proof. (i) Since elements of R pairwise commute and K P R8, it follows

that W*(R, K ) is abelian, as is W*(R, K )P6. Therefore, L(6 ’ ) % W*(R,
K )P6 is itself the unique maximal R-beable algebra for K.

(ii) Recall that 6 5 [R9_]. Thus, in this case, 6 5 [R9v]. Since

W*(R)P6 is abelian and v is a cyclic vector for W*(R)P6, it follows that

W*(R)P6 is maximal abelian as a subalgebra of L(6) [23, Corollary 7.2.16].
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Accordingly, W*(R)P6 is the unique maximal abelian subalgebra M of W*(R,

K )P6 with the property that W*(R)P6 # M. n

Remark 4.7. When R 5 {K }, case (i) applies, and the maximal R-
beable subalgebra consists of exactly those observables that share with K the

spectral projections that project onto K’ s range. This set of observables are

those taken to be determinate in most `modal’ interpretations of quantum

theory [13, 14, 37]. On the other hand, case (ii) strengthens and generalizes

(to observables with continuous spectra) the theorem proved in ref. 11,
which is the basis for the alternative modal interpretation of quantum theory

developed by Bub [10].

In what follows, we will denote the von Neumann algebra referred to

in Corollary 4.6(ii) by B(R, v). That is, B(R, v) 5 L(6 ’ ) % W*(R)P6,

where 6 5 [R9v]. We end this section with two applications of Corollary
4.6(ii) to the Copenhagen interpretation of quantum theory that are facilitated

by the following, more tractable characterization:

Proposition 4.8. Let A be in L(*)sa.

(i) If A P R8 and Av P [R9v], then A P B(R, v).

(ii) If A does not leave [R9v] invariant, then A ¸ B(R, v).

Proof. (i) Suppose that A P R8 5 R - and that Av P [R9v]. Using Lemma

2.1 for the C*-algebra R9, it follows that A leaves [R9v] 5 6 invariant. Since

A is self-adjoint, A also leaves 6 ’ invariant and A P L(6’ ) % L(6).

Since P6 P W*(R)8, the commutant of W*(R)P6 relative to L(6) is

P6W*(R)8P6 5 P6R8P6 [23, Prop. 5.5.6]. Clearly, then, P6AP6 is in the

commutant of W*(R)P6. However, since W*(R)P6 is maximal abelian,
P6AP6 P W*(R)P6. Therefore, A P L(6 ’ ) % W*(R)P6 5 B(R, v).

(ii) is trivial, since each element in B(R, v) leaves [R9v] invariant. n

One of Bell’s motivations for distinguishing beables from observables

was that the distinction makes ª explicit some notions already implicit in, and

basic to, ordinary quantum theory. For, in the words of Bohr, `it is decisive
to recognize that, however far the phenomena transcend the scope of classical

physical explanation, the account of all evidence must be expressed in classical

terms’ . It is the ambition of the theory of local beables to bring these `classical

terms’ into the equations, and not relegate them entirely to the surrounding

talkº [5, p. 52]. One can fulfil this ambition by understanding Bohr’ s asser-

tions, about the possibility of attributing certain observables determinate
values in certain measurement contexts, as arising from selecting the maximal

set of observables that can be determinate together with the determinacy of

whatever measurement results are actually obtained in a given measurement

context. Thus we propose to understand the Copenhagen interpretation, not
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as relying on a collapse of the state vector when a measurement occurs,

but rather as selecting for beable status the maximal R-beable subalgebra

determined by the ª privilegedº pointer observable R of the measuring system
and the pure entangled state Pv of the composite measured/measuring system

(see refs. 9 and 20 for related proposals that do not adopt an algebraic

approach). It then becomes possible to make precise the (hitherto obscure)

sense in which a measurement, for Bohr, can `make determinate’ the observ-

able that was measured, as well as make determinate certain observables of

spacelike-separated systems.

Example (Ideal Measurement). Let * and & be separable Hilbert spaces

for an apparatus and object, respectively, let R be the apparatus pointer

observable on * with eigenvectors xn , and let M be the measured observable

on & with eigenvectors yn and respective eigenvalues l n. Let R be the self-

adjoint operator R ^ I on * ^ & and let M be the self-adjoint operator I ^
M on * ^ &. Note that W*(R) 5 W*(R) ^ I.

Prior to an entangling measurement interaction that strictly correlates

the values of M with R, the total state will be v 0 5 x0 ^ ( cnyn , where ( ) cn ) 2
5 1 and x0 is the `ground state’ of the pointer observable. When two or more

of the coefficients {cn} are nonzero and two or more of the { l n} unequal,

then the premeasurement maximal R-beable algebra for Pv0, B(R, v0), will
fail to contain M. For every element of 6 5 [W*(R)v0] has the form x ^ (
cnyn for some x P *, yet Mv0 5 x0 ^ ( cn l nyn , which is not of the required

form. Thus M fails to leave 6 invariant, and M ¸ B(R, v0) by Corollary 4.8(ii).

On the other hand, after the unitary evolution that effects the measure-

ment, the state is v 5 ( cn(xn ^ yn). If Qn is the projection onto the one-

dimensional subspace [xn] of *, it follows that Qn ^ I P W*(R). We then
have Mv 5 ( cn l n(xn ^ yn) 5 [ ( l n(Qn ^ I )]v, and ( l n(Qn ^ I ) P W*(R).

Since M commutes with R, both conditions of Corollary 4.8(i) are satisfied,

and M P B(R, v)! Thus the act of measuring M has, in a sense, made M
determinate, but not via any physical disturbance (cf. Bohr ’ s [8, p. 317] well-

known and oft-repeated caution against speaking of `creation of physical
attributes of objects by measurements’ ). Rather, both before and after the

measurement one constructs the maximal set of observables that, together

with the pointer observable R, can have simultaneously determinate values,

and these purely formal constructions, designed to secure a maximally com-

plete account of each stage of the measurement process in classical terms,

forces one to different verdicts concerning the determinacy of M.

Example (EPR CorrelationsÐ Spin Case). Let *1 and *2 be two-dimen-

sional Hilbert spaces and let s xi, s yi, s zi be the Pauli spin operators on *i ,

for i 5 1, 2. For convenience, we write vectors in Dirac’ s ket notation and

suppress tensor products between vectors; for example, ) s x1 5 1 1 & ) s x2 5
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2 1 & denotes an eigenvector of s x1 ^ s x2 with eigenvalue 2 1. Let ) s& be the

singlet state in *1 ^ *2 which, expanded in the basis of eigenvectors for

s x1, is

) s& 5
1

! 2
( ) s x1 5 1 1 & ) s x2 5 2 1 & 2 ) s x1 5 2 1 & ) s x2 5 1 1 & ) (4.32)

This state also assumes the same form relative to the y and z bases, thus it

predicts that identical spin components of the two particles will always be

found on measurement to be anticorrelated long after the particles have
interacted and separated. Exploiting correlations of the exact same kind

between the positions and momenta of two particles (whose analysis we defer

until the next section), Einstein, Podolsky, and Rosen [31] argued for the

joint determinacy of incompatible observables on the basis of the following

`reality’ criterion: ª If, without in any way disturbing a system, we can predict
with certainty (i.e., with probability equal to unity) the value of a physical
quantity, then there exists an element of physical reality corresponding to this
physical quantityº [31, p. 777]. In the case of incompatible spin components in

the state (4.32), EPR’ s argument is straightforward. If s x1 were measured,

then, regardless of the value obtained, s x2’ s value could be predicted with

certainty without in any way disturbing particle 2, spacelike-separated from
1. It then would follow from the reality criterion that s x2 has a value (is an

`element of reality’ ) quite apart from whether s x1 is actually measured on

particle 1. But then, by exactly parallel reasoning from the possibility of

measuring s y1, s y2 must have a value as wellÐ and yet it fails to commute

(or, indeed, share any eigenvectors) with s x2. Bohr ’ s response to EPR’s

argument pointed to an ambiguity in their phrase ª without in any way dis-
turbing a systemº : ª Of course there is in a case like that just considered no

question of a mechanical disturbance of the system . . . . [but] there is essen-

tially the question of an influence on the very conditions which define the
possible types of predictions regarding the future behaviour of the systemº

[7, p. 148]. The phrase Bohr italicizes here has seemed opaque to many

commentators (not least, Bell [5, p. 155]). Yet by employing the appropriate
maximal R-beable subalgebras, it is possible to understand how measuring

the x-spin (respectively, y-spin) of particle 1 can have an affect on the

conditions that permit the ascription of a definite value to the x-spin (respec-

tively, y-spin) of particle 2.

Let * 0 be a three-dimensional Hilbert space, and let R 0 be a self-adjoint

operator on * 0 whose eigenvalues 2 1, 0, and 1 represent the different possible
states of the pointer observable on an apparatus ready to measure s x1. Prior

to the measurement, the total state of apparatus and particles is ) v0& 5 ) R 0 5
0& ) s& with ) R 0 5 0& the apparatus ground state. As before, take R [ R 0 ^ I
^ I. Clearly, [W*(R) ) w & ] consists only of vectors of the form ) t & ) s& for some
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) t & P * 0, since W*(R) 5 W*(R 0) ^ (I ^ I ) 5 W* (R 0) ^ I. However, (I ^
s x1 ^ I ) ) v0& 5 ) R 0 5 0& ) u & , where

) u & 5
1

! 2
( ) s x1 5 1 1 & ) s x2 5 2 1 & 1 ) s x1 5 2 1 & ) s x2 5 1 1 & ) (4.33)

and ) u & ’ ) s& . Thus, by Corollary 4.8(ii), I ^ s x1 ^ I ¸ B(R, v0). A similar
argument shows that none of (I ^ I ^ s x2), (I ^ s y1 ^ I ), or (I ^ I ^ s y2)

lies in B(R, v0).

However, after the measurement of s x1 actually occurs, it results in the

entangled state

) v & [
1

! 2
( ) R 0 5 1 1 & ) s x1 5 1 1 & ) s x2 5 2 1 & (4.34)

2 ) R 0 5 2 1 & ) s x1 5 2 1 & ) s x2 5 1 1 & )

Now, I ^ s x1 ^ s x2 commutes with R, and (I ^ s x1 ^ s x2) ) v & 5 2 ) v & P
[W*(R) ) v & ]. Thus, by Corollary 4.8(i), I ^ s x1 ^ s x2 P B(R, v). Moreover,

it is easy to see that (I ^ s x1 ^ I ) ) v & 5 (R 0 ^ I ^ I ) ) v & P [W*(R) ) v & ]. Thus,

I ^ s x1 ^ I P B(R, v). But since s 2
x1 5 I,

(I ^ s x1 ^ s x2)(I ^ s x1 ^ I ) 5 I ^ I ^ s x2 (4.35)

and the latter lies in B(R, v) as well. On the other hand, it is not difficult to

show that I ^ s y1 ^ I ¸ B(R, v). First,

(I ^ s y1 ^ I ) ) v & 5 2 i( ) R 0 5 1 1 & ) s x1 5 2 1 & ) s x2 5 2 1 &

1 ) R 0 5 2 1 & ) s x1 5 1 1 & ) s x2 5 1 1 & ) (4.36)

However, since W*(R) 5 W*(R 0) ^ I ^ I, the generic element of [W*(R) ) v & ]

has the form

) t & ) s x1 5 1 1 & ) s x2 5 2 1 & 2 ) u & ) s x1 5 2 1 & ) s x2 5 1 1 & (4.37)

for some ) t & , ) u & P *0. Thus, (I ^ s y1 ^ I ) ) v & ¸ [W*(R) ) v & ], and it follows

from Corollary 4.8(ii) that I ^ s y1 ^ I ¸ B(R, v). A similar argument shows
that I ^ I ^ s y2 ¸ B(R, v). Thus we see how once s x1 is actually measured,

both it and s x2 `become determinate’ in just the same nonmechanical sense

as explained at the end of the previous exampleÐ and this occurs at the

expense of the determinacy of the y-spins of the particles. Of course, a parallel

analysis applies, by symmetry, if s y1 were actually measured instead; in that

case, it would be legitimate to ascribe determinacy to both y-spins of the
particles at the expense of their x-spins. In neither case (i.e., in neither the

x1- nor y1-spin measurement context) does it follow that both s x2 and s y2 are

determinate. Thus the EPR argument fails for exactly the reason suggested

by the phrase Bohr sets in italics in the passage cited above.
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Finally, it is worth addressing SchroÈ dinger ’ s [33, Sec. 12] clever modifi-

cation of the EPR argument. In terms of spin, his proposal was that one

consider measuring s x1 at the same time t (in some frame) as s y2 is measured.
The latter measurement allows one to directly ascertain the value of s y2 while

the former ’ s measurement result, obtained at a distance (`without in any way

disturbing the system’ ), allows one to infer the value of s x2 indirectly via

(4.32)’ s strict x-spin correlation and the EPR reality criterion. It would thus

appear, not only that s x2 and s y2 must by simultaneously determinate at

t, but can be simultaneously known! (According to SchroÈ dinger, we have
`hypermaximal’ knowledge of the state of particle 2.)

Of course, the value of s x2 that becomes `known’ by such a procedure

will have no predictive significance for a measurement of s x2 that occurs later

than t, thus the uncertainty principle is not contradicted. More importantly, an

analysis along the lines set forth above shows that SchroÈ dinger’ s experiment

cannot be used to contradict the indeterminacy principle for s x2 and s y2 either.
Assuming both s x1 and s y2 are actually measured at time t in state (4.32), and

modeling the two measurements in terms of strict correlations to the values of

two pointer observables R1 and R2, let the final postmeasurement state be

) vt & . To ascertain which observables can be regarded as determinate in this

measurement context, we must now take our set of preferred observables to
include both pointer observables. It is then easy to show that s y2 (and s x1) lies

in B({R1, R2}, vt), but s x2 (and s y1) does not. Thus performing a direct measurement

of s y2 renders invalid SchroÈ dinger’ s use of the EPR reality criterion to secure a

value for s x2 in the given measurement context. It follows that the EPR reality

criterion cannot be part of the Copenhagen interpretation (if our reconstruction

of the interpretation is correct), but is valid only in the special case where there
is no direct measurement being made of observables incompatible with ones

whose values are predictable with certainty on the basis of the criterion.

4.2. R-Beable Algebras for Arbitrary Pure States

We now discuss the extension of Theorem 4.5 to the case of an arbitrary
(not necessarily normal) pure state on a C*-algebra A (either abstract or

concrete). Although our results are limited, they still permit a characterization

of Bohr’ s response to the original EPR argument, which in fact employed a

singular state of two particles with strictly correlated positions and momenta.

Let A be a C*-algebra and let ( p r , * r , x r ) be the GNS triple for A
induced by the pure state r . Once more, let R be a family of mutually
commuting observables drawn from A. Now, p r (R) is a mutually commuting

family of observables in L(* r ). Thus, we may apply Corollary 4.6(ii) to

conclude that B( p r (R), x r ) [ L(6 ’ ) % W*( p r (R))P6 is the unique maximal

(in L(* r )) p r (R)-beable algebra for v x r . (In this case, 6 is the smallest
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subspace of * r such that x r P 6 and p r (R) leaves 6 invariant; i.e., 6 5
[ p r (R)9x r ].) We now verify that the inverse image of B( p r (R), x r ) under p r

is R-beable for r .

Notation. We define B(R, r ) [ p 2 1
r [B( p r (R), x r )]. This is meant to

extend our earlier (concrete) notation B(R, v) since, when A 5 L(*) and
r is induced by a unit vector v P *, L(*) and L(* r ) are unitarily equivalent,

from which it follows that B(R, r ) 5 B(R, v).

Proposition 4.9. Let r be a pure state of A and let R be a mutually

commuting family of observables in A. Then, B(R, r ) is R-beable for r .

Proof. Clearly, B(R, r ) is a C*-algebra, since it is the inverse image

under p r of a C*-algebra. Furthermore, (R-Priv) follows by the construction

of B(R, r ).

(Beable) Let 7 [ [ p r (B(R, r ))x r ]. By Prop. 2.2(iv), it will be sufficient
to show that p r (B(R, r ))P7 is abelian. Clearly, 7 is the smallest subspace

(of * r ) that contains x r and that is invariant under p r (B(R, r )). However,

6 contains x r by construction, and 6 is invariant under p r (B(R, r )) [since

p r maps B(R, r ) into L(6 ’ ) % L(6)]. Thus 7 # 6. Conversely, p r (R)

leaves 7 invariant, since p r (R) # p r (B(R, r )). Therefore 6 5 7 and

p r (B(R, r ))P7 5 p r (B(R, r ))P6 # W*( p r (R))P6. The conclusion then
follows by noting that W*( p r (R))P6 is abelian (since R is a mutually commut-

ing family of operators).

(Def) Let U be a unitary element of A such that U P R8 and r U 5 r .

In this case (i.e., where r is pure), we can actually prove the stronger result

that U P B(R, r ), from which it follows immediately that UB(R, r )U* 5
B(R, r ).

We show first that x r is an eigenvector of p r (U ). For this, let x [ x r

and let y [ p r (U )x r . Since r is pure, the representation ( p r , * r ) of A is

irreducible [23, Thm. 10.2.3]. Thus, p r (A) 2 5 L(* r ). In particular, there is

a net ( p r (Ha)) # p r (A) such that WOT-lima p r (Ha) 5 Px. However, ^ p r (Ha)

x, x & 5 r (Ha) 5 r U(Ha) 5 ^ p r (Ha)y, y & , for all a. Since v x and v y are WOT-
continuous, it follows that

1 5 ^ Pxx, x & 5 ^ Pxy, y & 5 ) ^ x, y & ) 2 (4.38)

Hence, ) ^ x, y & ) 2 5 |x| ? |y|, and by the Cauchy±Schwarz inequality, y 5 cx
for some c P C 1, which is what we wanted to show.

Now, since x r is an eigenvector of p r (U ), it follows that p r (U )x r P 6.

Moreover, since U P R8, it follows that [ p r (U ), p r (R)] 5 { 0}. Thus, by

Prop. 4.8(i), p r (U ) P B( p r (R), x r ) and U P B(R, r ). n

Open Problem. Let * be a Hilbert space, and let r be a state of L(*).
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(i) When r is singular: Do all its maximal R-beable algebras contain

B(R, r )? Is B(R, r ) itself maximal? Is it unique?

(ii) When r is not normal (pure or mixed): Classify the maximal R-
beable algebras for r along the lines of Theorem 4.5.

(iii) When r is not a vector state: Give necessary and sufficient condi-

tions for there to be a unique maximal R-beable algebra for r (cf.

Corollary 4.6).

In our final section, we reconstruct Bohr ’ s reply to the original EPR
argument, in terms of maximal R-beable algebras by employing B(R, r ),

which is well defined when r is taken to be the singular EPR state. Should

the answer to the second and third questions in (i) above prove negative, the

results of our reconstruction will still remain valid if the first question can

be answered positively.

4.3. EPR Correlations: Position/Momentum Case

We begin by defining the EPR state r . Let & [ L2( R ), and let Q be the

unbounded, self-adjoint position operator on & defined by Q c 5 x c , where

$(Q) consists of those functions c P L2( R ) such that x c P L2( R ). Let T be
the L2( R ) Fourier transform, a unitary operator on & [23, Thm. 3.2.31]. Let

D be the unbounded, self-adjoint operator on & defined to be T 2 1QT on

domain T 2 1($(Q)) [23, Exercise 5.7.49]. One may show, then, that D c 5
i(d c /dx) when c P $(D) is differentiable, i.e., D is the momentum operator.

Since Q is affiliated with the abelian von Neumann algebra W*(Q), Q
is represented by a self-adjoint function f (Q) on S0 [the space of pure states
of W*(Q)]. Since sp(Q) 5 R and the range of f (Q) is equal to sp(Q), we

are guaranteed that for each l P R , there is a (necessarily singular) pure state

a P S0 such that f (Q)( a ) 5 l. We may apply the same procedure for D in

order to obtain a pure state b of W*(D). In keeping with the original EPR

argument, we shall choose b (as we may) such that f (D)( b ) 5 0.

Now, we may think of W*(Q) and W*(D) as acting on two different
copies &1 and &2 of &. In this case, we may form the C*-tensor product

W*(Q) ^ W*(D), which acts on &1 ^ &2 [23, Section 11.1]. It then follows

that there is a unique pure state a ^ b on the W*(Q) ^ W*(D) [23, Prop.

11.1.1]. Moreover, since a ^ b is pure, we may extend it to a pure state v
of L(&1 ^ &2). [Note, however, that there is no guarantee of the uniqueness
of our choice of v . In particular, arbitrariness entered into our choice of a
and b as well as into our extension of a ^ b to L(&1 ^ &2).]

Notation. Let * [ &1 ^ &2 . L2( R 2). Let Q1 be the unbounded operator

Q ^ I acting on *. Let Q2 be the operator I ^ Q. Define D1 and D2 similarly.
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For u P R , let R 2 u be the rotation of R 2 through 2 u . Let U( u ) be the

unitary rotation operator on * defined by U( u ) c [ c + R 2 u . If we let X [
U( u )

2 1Q1U( u ) and P [ U( u )
2 1D2U( u ), it follows that

X 5 Q1 cos u 2 ÃQ2 sin u , P 5 D1 sin u 1 ÃD2 cos u (4.39)

(That is, these pairs of unbounded operators have the same domain and agree

on this domain. Cf. Bohr [7, p. 696(note) ].) With this in mind, we define the

singular state r of L(*) by r [ v U( u ). We can then show that for any f P @( R ),

r ( f (X )) 5 v ( f (Q1)), r ( f (P)) 5 v ( f (D2)) (4.4 0)

This makes precise the sense in which the behavior of r relative to X and P
is identical to the behavior of v relative to Q1 and D2. In particular, it follows

that r ) W*(X) and r ) W*(P) are dispersion-free and are, respectively, well defined

for X and P. Moreover, one can show that f (X )( r 1) 5 l and f (P)( r 2) 5 0,
where r 1 5 r ) W*(X) and r 2 5 r ) W*(P). In what follows we will fix u 5 p /4.

However, instead of letting X [ 2 2 1/2(Q1 2 ÃQ2), we let X [ Q1 2 ÃQ2, the

relative position of two particles moving in one dimension; similarly, we let

P [ P1 1 ÃP2, their total momentum. Since r assigns a definite (nonzero)

relative position to the particles and assigns them a definite (zero) total

momentum, knowing the value of Q1 in state r allows one to predict with
certainty the value of Q2, and similarly for D1 and D2. Thus we have the

conditions employed by EPR, in conjunction with their reality criterion, to

argue for the simultaneous determinacy of Q2 and D2.

We pause to note a technical difficultyÐ a feature of the EPR state r ,

not present in the singlet spin state versionÐ that EPR do not address. Since

[Q2, P] 5 [D2, X ] 5 i " I, Corollary 3.8 dictates that neither Q2 nor D2 has
beable status for r Ð or for any state obtained from r after a measurement

on particle 1 is performed. Thus any argument which purports to establish

the existence of simultaneous definite values in state r for Q2 and D2 is

necessarily suspect. In fact, since [Q1, P] 5 2 [D1, X ] 5 i " I, Corollary 3.8

also dictates that the probability of obtaining a value in any finite interval
of the real line for Q1 or D1 is always zero in the state r . This blocks the

use of EPR’ s reality criterion, which first requires that either Q1 or D1 is

measured and a finite value obtained. However, a natural way to overcome

this obstacle is simply to understand EPR as setting out to establish that all

bounded Borel functions of both Q2 and D2 have simultaneous reality in the

state r .
Unfortunately, we have been unable to confirm that r must dictate strict

correlations between arbitrary Borel functions of Q1 and Q2 (or D1 and D2).

Open Problem. Let * [ L2( R 2), and let E1, E2, F1, and F2 denote,

respectively, the projection-valued measures for Q1, Q2, D1, and D2. For any
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pure state v of L(*), we say that v is completely EPR-correlated just in

case v (E2(C 2 l)E1(C)) 5 v (E1(C)) and v (F1(C)F2(C)) 5 v (F1(C)) for all

Borel subsets C of R .

(i) Are there completely EPR-correlated states?

(ii) Must r (as defined above) be completely EPR-correlated?

On the other hand, we shall shortly establish (Lemma 4.13 below) that r
strictly correlates the bounded uniformly continuous (BUC) functions of Q1

with those of Q2, and the BUC functions of D1 with D2. Let C*(Qi) denote
the C*-algebra of all BUC functions of Qi , and similarly for C*(D i). Then

we shall take as the object of the EPR argument the establishment (at a

minimum) of the simultaneous reality of C*(Q2) and C*(D2) in r . Should

the answer to (ii) above be positive, EPR’s reality criterion would entitle

them to substitute W*(Q2) and W*(D2) for C*(Q2) and C*(D2); but then the

same substitution would apply to Bohr ’ s reply. Note also that, since r is not
ultraweakly continuous, such a substitution is not automatically warranted.

Let W*(Q1, Q2) be the abelian von Neumann algebra generated by Q1

and Q2. (The reader should note that everything we subsequently establish

about Q1 and Q2 in the state r follows, by symmetry, for D1 and D2 as well.)

Since W*(Q1, Q2) is abelian, we may represent it as the space of continuous
functions on the set S of pure states of W*(Q1, Q2). Moreover, r ) W*(Q1,Q2)

may be represented as a probability measure m r on S.

Remark 4.10. Let R be a (possibly unbounded) self-adjoint operator.

Recall that for any f P @u( R ), the operator f(R) is canonically constructed

by employing the representation of R as a function f 0(R) in the space 1(S0)

of unbounded functions on the set S0 of pure states of W*(R). Suppose that
V is another abelian von Neumann algebra such that R h V, and let S1 be the

set of pure states of V. Then, R is represented by a function f 1(R) in 1(S1).

In such a case, we may mimic the canonical construction in order to obtain

ª functionsº of R in V. Fortunately, we are guaranteed that, whether we

perform the construction relative to W*(R) or relative to V, there can be no
ambiguity concerning the resulting operator f(R) [23, Remark 5.6.28]. This

fact will be important for what follows, since we will be concerned with

functional relationships between X, Q1, and Q2. In this case, all three operators

are affiliated with the abelian von Neumann algebra W*(Q1, Q2).

In an abuse of notation (which will be justified in what follows) let gÄ

denote a Borel subset of S. Then, we know that there is a unique clopen set
h such that h D gÄ is meager, where h D gÄ 5 (h 2 gÄ ) ø (gÄ 2 h). Let f be another

clopen set such that gÄ # f. Then, noting that h ù f is also clopen, it follows

from an elementary set-theoretic argument that h # f. Using this fact, we

may establish the following lemma:
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Lemma 4.11. Let L [ { v P S: f (X )( v ) 5 l}. Then m r (L) 5 1.

Proof. Fix n P N and let f be the characteristic function of the clopen set

Sn [ [ f (X ) 2 1 (l 2 n 2 1, l 1 n 2 1)] 2 (4.41)

By the construction of r , we have r (E(Cn)) 5 1, where E is the spectral

measure for X and Cn [ (l 2 n 2 1, l 1 n 2 1) # R [cf. Lemma 3.1(ii)]. In

other words, * h d m r 5 1, where h 5 f (E(Cn)). Recall that h is defined to

be the unique closest continuous function to gÄ , where gÄ ( v ) 5 1 if f (X )( v ) P
(l 2 n 2 1, l 1 n 2 1) and gÄ ( v ) 5 0 otherwise. However, gÄ # h, for if gÄ ( v ) 5
1, then v P f (X ) 2 1(l 2 n 2 1, l 1 n 2 1). Now applying the considerations

prior to this lemma (identifying sets with their characteristic functions), we

have h # f and * f d m r 5 1. That is, m r (Sn) 5 1 for all n P N . Moreover,

since Sn $ Sn 1 1 for all n, m r ( ù Sn) 5 limn m r (Sn) 5 1. Since ù n P N Sn #
L, it follows that m r (L) 5 1. n

Lemma 4.12. Let Z and Z8 be the closed, nowhere dense subsets of S
at which f (Q1) and f (Q2), respectively, are not defined. Then L is the disjoint

union of Lù (Z ù Z8) and L \ (Z ø Z8).

Proof. Let Z9 be the set of points in S at which f (Q1) 2 Ã f (Q2) is not
defined, and suppose that v P L ù Z # (S \Z9) ù Z. Since Z ø Z8 ø Z9
is closed and nowhere dense, there is a net ( t a) # S \ (Z ø Z8 ø Z9) such

that t a ® v . Using the fact that f (Q1 2 ÃQ2)( t a) 5 f (Q1)( t a) 2 f (Q2)( t a)

for each t a (since t a P S \ (Z ø Z8)), and the fact that lima ) f (Q1)( t a) ) 5 ` ,

it follows that lima ) f (Q2)( t a) ) 5 ` , and thus v P Z8. A similar argument

shows that if v P L ù Z8, then v P Z. n

Lemma 4.13. For any A P C*(Q2), there is an A8 P C*(Q1) such that

v (A8) 5 v (A) for all v P L [and A8 may be chosen so that sp(A8) 5 sp(A)].

Proof. Let A P C*(Q2). Then, A 5 f(Q2), for some BUC function f on

R . Let A8 [ g(Q1), where g(x) 5 f (x 2 l), x P R , and let h1 and h2 be the

unique continuous functions on S corresponding , respectively, to fÄ and gÄ .
[Clearly, h1 and h2 have identical range and it follows from ref. 23, Prop.

5.6.2 0, that sp(A) 5 sp(A8).]
We now show that that fÄ ) L 5 gÄ ) L. For this, let v P L.

Case 1a. Suppose that v P L 2 (Z ø Z8). Then l 5 f (Q1) 2 Ãf (Q2)( v )

5 f (Q1)( v ) 2 f (Q2)( v ) and f (Q1)( v ) 2 l 5 f (Q2)( v ). Therefore,

gÄ ( v ) 5 g( f (Q1)( v )) 5 f ( f (Q1)( v ) 2 l) 5 f ( f (Q2)( v )) 5 fÄ ( v ) (4.42)

Case 1b. Suppose that v P L ù (Z ù Z8). Then, by definition, fÄ ( v ) 5
gÄ ( v ) 5 0, since f (Q1) and f (Q2) are not defined at v .

We now show that h1 ) L 5 h2 ) L.
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Case 2a. Suppose that v P L 2 (Z ø Z8). By Case 1a, it will be

sufficient to show that h1( v ) 5 fÄ ( v ) and h2( v ) 5 gÄ ( v ). In order to establish

this, note that fÄ and gÄ are continuous on S 2 (Z ø Z8) (since each is the
composition of two continuous functions). Moreover, by definition, fÄ may

not disagree with the continuous function h1 on any open set (in S), and gÄ

may not disagree with the continuous function h2 on any open set (in S).

Therefore, h1 ) S 2 (Z ø Z8) 5 fÄ ) S 2 (Z ø Z8) and h2 ) S 2 (Z ø Z8) 5 gÄ ) S 2 (Z ø Z8).

Case 2b. Suppose that v P L ù (Z ù Z8). Since Z ø Z8 is nowhere

dense, there is a net ( t a) # S \ (Z ø Z8) such that t a ® v . For each a,

) h1( v ) 2 h2( v ) ) 5 ) h1( v ) 2 h1( t a) 1 h1( t a) 2 h2( t a)

1 h2( t a) 2 h2( v ) ) (4.43)

# ) h1( v ) 2 h1( t a) ) 1 ) h1( t a) 2 h2( t a) )
1 ) h2( t a) 2 h2( v ) ) (4.44)

If we take the limit over a of the RHS of (4.44), the first and third terms go
to zero since h1 and h2 are continuous. Thus, ) h1( v ) 2 h2( v ) ) # lima ) h1( t a)
2 h2( t a) ) .

If we let xa [ f (Q2)( t a) and ya [ f (Q1)( t a) 2 l, then it follows from

the continuity of f that h1( t a) 5 f (xa) and h2( t a) 5 f ( ya) (see Case 2a). Thus,

) h1( v ) 2 h2( v ) ) # lima ) f (xa) 2 f ( ya) ) . Now, using the fact that f (Q1) 2
f (Q2) is continuous at v , and ( t a) # S \ (Z ø Z8), we have

l 5 [ f (Q1) 2 Ãf (Q2)]( v ) 5 lim
a

[ f (Q1) 2 Ãf (Q2)]( t a) (4.45)

5 lim
a

[ f (Q1)( t a) 2 f (Q2)( t a)]

and lima ) xa 2 ya ) 5 0. But this, in conjunction with the fact that f is uniformly

continuous, entails that lima ) f (xa) 2 f ( ya) ) 5 0. Therefore, h1( v ) 5 h2( v ). n

Remark 4.14. Lemma 4.13, and its analogue for D1 and D2, is necessary

for EPR to be able to use r to argue for the simultaneous determinacy

of C*(Q2) and C*(D2). The reader will note that this lemma cannot be

straightforwardly modified for the case where A 5 f (Q1) for any f in @( R )
or in #( R ) (cf. the open problem above). On one hand, the assumption of

continuity is needed to show that h1( v ) 5 h2( v ) when v P L 2 (Z ø Z8).
On the other hand, the assumption of uniform continuity is needed to show

that h1( v ) 5 h2( v ) when v P L ù (Z ù Z8).

Lastly, we turn to Bohr’ s reply. As in our earlier analysis of the spin version

of EPR’ s argument, we need to consider the effect of an ideal measurement of

Q1 that strictly correlates its values to those of an apparatus, initially in a

ground state v 0, with a pointer observable R satisfying sp(R) 5 sp(Q1). The
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final postmeasurement state of apparatus and particles will have the form

( v 0 ^ r )U , where the unitary evolution effecting the measurement correlation

satisfies [U, Q1] 5 0 (consistent with the measurement being ideal). Observing
the registered value for any element of C*(R), the value of the corresponding

element of C*(Q1) may then be inferred. If we again understand Bohr’ s reply

in terms of selecting the appropriate maximal R-beable algebra for this mea-

surement context, he can be seen (modulo our remarks at the end of last

section) as endorsing the attribution of determinate values to the elements in

B(C*(R), ( v 0 ^ r )U). It is not difficult to show (given the above specifications
of the measurement interaction) that the set B(C*(Q1), r ) coincides with the

elements of B(C*(R), ( v 0 ^ r )U) that pertain only to the two EPR particles.

Thus, our final proposition below establishes, in direct analogy to the spin

case, that B(C*(R), ( v 0 ^ r )U) contains all BUC functions of Q2 but not of D2.

Proposition 4.15. (i) C*(Q2) # B(C*(Q1), r ).

(ii) C*(D2) Ü B(C*(Q1), r ).

Proof. (i) Since C*(Q2) is a C*-algebra, it will be sufficient to show

that for every unitary element A P C*(Q2), A P B(C*(Q1), r ). Moreover,

since p r (A) commutes with all elements in p r (C*(Q1)), the result would

follow from Proposition 4.8(i) if we could show that p r (A)x r P 6. We

proceed to show this.

From Lemma 4.13, there is a unitary A8 P C*(Q1) such that v (A) 5
v (A8), for all v P L. Since each v P L is dispersion-free, it follows that

v ((A8)*A) 5 v (A8) v (A) 5 ) v (A) ) 2 5 1. Thus,

r ((A8)*A) 5 # S

v s((A8)*A) d m r (s) 5 # L

v s((A8)*A) d m r (s) 5 m r (L) 5 1

(4.46)

where we have used Lemma 4.11 in the second and final equalities. From

(4.46) it follows that, in the GNS representation [of L(*)] for r , ^ p r ((A8)*A)x r ,

x r & 5 1. Hence, we may use the fact that p r is a * -homomorphi sm in
combination with the Cauchy±Schwarz inequality to conclude that p r (A)x r

5 c p r (A8)x r , for some c P C 1. In particular, p r (A)x r P [ p r (C*(Q1))x r ] 5
6, as we wished to show.

(ii) Since B(C*(Q1), r ) is beable for r , it has a dispersion-free state v .

We show that this entails that Ws [ eisD2 ¸ B(C*(Q1), r ) for all s Þ 0. In

order to see this, note first that Ut [ eitQ2 P C*(Q2) # B(C*(Q1), r ), for all
t P R , since eitx is uniformly continuous on R . Suppose, for reductio ad
absurdem , that Ws P B(C*(Q1), r ) for some s Þ 0. Since Q2 and D2 satisfy

the Weyl form of the CCR we have U tWs 5 eistWsUt for all t P R , and

v (UtWs) 5 eist v (WsU t) for all t P R . Fix t P R such that st Þ n p for any
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n P 2 Z . Since v is dispersion-free on U t , it follows that v (Ut) v (Ws) 5
eist v (Ws) v (U t). Moreover, v (Ut) Þ 0 and v (Ws) Þ 0 since v must assign

each unitary operator a value in its spectrum [Proposition 1.1(ii)]. Thus, we
have eist 5 1, contrary to our assumption that st Þ n p for any n P 2 Z .

Therefore Ws ¸ B(C*(Q1), r ) when s Þ 0. n

By symmetry of reasoning, if we suppose that the BUC functions of D1

are actually measured in the original EPR experiment instead of those of Q1,

it will become legitimate to regard all BUC functions of D2, but not of Q2,

as having determinate values. And, as in the spin case, one has no grounds

within the Copenhagen interpretation (so reconstructed) for asserting that
both C*(Q2) and C*(D2) are determinate in state r relative to any fixed

measurement context for particle 1.
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